Solved Problems In Transport Phenomena: Energy Transfer


Book Description

Transport Phenomena is an umbrella term to describe the fundamental processes of momentum, energy, and mass transfer.This unique compendium covers energy transfer at the microscopic and macroscopic levels in the three stages of problem-solving, namely formulation, simplification, and mathematical solution. The book does not overwhelm students with a large repertoire of problems. Instead, it highlights clear and easy presentation to help students grasp the methodology in problem-solving.This useful reference text benefits upper undergraduate and graduate level students in the fields of chemical, mechanical, petroleum, and environmental engineering.




Solved Problems In Transport Phenomena: Momentum Transfer


Book Description

Transport Phenomena is an umbrella term to describe the fundamental processes of momentum, energy, and mass transfer.This unique compendium covers momentum transfer at the microscopic and macroscopic levels in the three stages of problem-solving, namely formulation, simplification, and mathematical solution. The book does not overwhelm students with a large repertoire of problems. Instead, it highlights clear and easy presentation to help students grasp the methodology in problem-solving.This useful reference text benefits upper undergraduate and graduate level students in the fields of chemical, mechanical, civil, and environmental engineering.Related Link(s)




Transport Phenomena


Book Description

This invaluable text, provides a much-needed overview of both the theoretical development, as well as appropriate numerical solutions, for all aspects of transport phenomena. It contains a basic introduction to many aspects of fluid mechanics, heat transfer and mass transfer, and the conservation equations for mass, energy and momentum are discussed with reference to engineering applications. Heat transfer by conduction, radiation, natural and forced convection is studied, as well as mass transfer and incompressible fluid mechanics. The second part of the book deals with numerical methods used to solve the problems encountered earlier. The basic concepts of finite difference and finite volume methods are presented. Other subjects usually covered in mathematical textbooks such as vector and tensor analysis, Laplace transforms, and Runge-Kutta methods are discussed in the Appendices. * Offers comprehensive coverage of both transport phenomena and numerical and analytical solutions to the problems. * Includes comprehensive coverage of numerical techniques. * Provides real-life problems and solutions, which are vital to the understanding and implementation of applications. This work will be welcomed not only by senior and graduate students in mechanical, aeronautical and chemical engineering, but also for engineers practising in these fields.




Transport and Surface Phenomena


Book Description

Transport and Surface Phenomena provides an overview of the key transfers taking place in reactions and explores how calculations of momentum, energy and mass transfers can help researchers develop the most appropriate, cost effective solutions to chemical problems. Beginning with a thorough overview of the nature of transport phenomena, the book goes on to explore balances in transport phenomena, including key equations for assessing balances, before concluding by outlining mathematical methods for solving the transfer equations. Drawing on the experience of its expert authors, it is an accessible introduction to the field for students, researchers and professionals working in chemical engineering. The book and is also ideal for those in related fields such as physical chemistry, energy engineering, and materials science, for whom a deeper understanding of these interactions could enhance their work.




Transport Phenomena


Book Description




Transport Phenomena in Fires


Book Description

Controlled fires are beneficial for the generation of heat and power while uncontrolled fires, like fire incidents and wildfires, are detrimental and can cause enormous material damage and human suffering. This edited book presents the state-of-the-art of modeling and numerical simulation of the important transport phenomena in fires. It describes how computational procedures can be used in analysis and design of fire protection and fire safety. Computational fluid dynamics, turbulence modeling, combustion, soot formation, thermal radiation modeling are demonstrated and applied to pool fires, flame spread, wildfires, fires in buildings and other examples.




Advanced Transport Phenomena


Book Description

The term 'transport phenomena' describes the fundamental processes of momentum, energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.




Transport Phenomena in Materials Processing


Book Description

This text provides a teachable and readable approach to transport phenomena (momentum, heat, and mass transport) by providing numerous examples and applications, which are particularly important to metallurgical, ceramic, and materials engineers. Because the authors feel that it is important for students and practicing engineers to visualize the physical situations, they have attempted to lead the reader through the development and solution of the relevant differential equations by applying the familiar principles of conservation to numerous situations and by including many worked examples in each chapter. The book is organized in a manner characteristic of other texts in transport phenomena. Section I deals with the properties and mechanics of fluid motion; Section II with thermal properties and heat transfer; and Section III with diffusion and mass transfer. The authors depart from tradition by building on a presumed understanding of the relationships between the structure and properties of matter, particularly in the chapters devoted to the transport properties (viscosity, thermal conductivity, and the diffusion coefficients). In addition, generous portions of the text, numerous examples, and many problems at the ends of the chapters apply transport phenomena to materials processing.




INTRODUCTION TO TRANSPORT PHENOMENA


Book Description

This introductory text discusses the essential concepts of three funda-mental transport processes, namely, momentum transfer, heat transfer, and mass transfer. Apart from chemical engineering, transport processes play an increasingly important role today in the fields of biotechnology, nanotechnology and microelectronics. The book covers the basic laws of momentum, heat and mass transfer. All the three transport processes are explained using two approaches—first by flux expressions and second by shell balances. These concepts are applied to formulate the physical problems of momentum, heat and mass transfer. Simple physical processes from the chemical engineering field are selected to understand the mechanism of these transfer operations. Though these problems are solved for unidirectional flow and laminar flow conditions only, turbulent flow conditions are also discussed. Boundary conditions and Prandtl mixing models for turbulent flow conditions are explained as well. The unsteady-state conditions for momentum, heat and mass transfer have also been highlighted with the help of simple cases. Finally, the approach of anology has also been adopted in the book to understand these three molecular transport processes. Different analogies such as Reynolds, Prandtl, von Kármán and Chilton–Colburn are discussed in detail. This book is designed for the undergraduate students of chemical engineering and covers the syllabi on Transport Phenomena as currently prescribed in most institutes and universities.




An Introduction to Mass and Heat Transfer


Book Description

This highly recommended book on transport phenomena shows readers how to develop mathematical representations (models) of physical phenomena. The key elements in model development involve assumptions about the physics, the application of basic physical principles, the exploration of the implications of the resulting model, and the evaluation of the degree to which the model mimics reality. This book also expose readers to the wide range of technologies where their skills may be applied.