Separation Techniques in Nuclear Waste Management (1995)


Book Description

Separation Techniques in Nuclear Waste Management is an up-to-date, comprehensive survey of processes for separation of nuclear wastes. Comprised of articles by scientists and engineers at universities and national laboratories in the U.S. and overseas, the book provides excellent reference information for individuals working in nuclear waste management. Specifically, the book covers current separation technologies and techniques for waste liquid, solid, and gas streams that contain radionuclides. Such wastes are typical of those produced as a result of nuclear materials processing and spent fuel reprocessing. Chapters on promising new technologies and state-of-the-art processes currently in use provide valuable information for design engineers, as well as for research scientists. The articles in Separation Techniques in Nuclear Waste Management are brief and concise - designed for quick access to pertinent information. Many of the contributors are leaders in their fields. It is the most current survey available of the latest nuclear waste management techniques.




Solvent Extraction


Book Description

The main challenge in modern solvent extraction separation is that most techniques are mainly empirical, specific and particular for narrow fields of practice and require a large degree of experimentation. This concise and modern book provides a complete overview of both solvent extraction separation techniques and the novel and unified competitive complexation/solvation theory. This novel and unified technique presented in the book provides a key for a preliminary quantitative prediction of suitable extraction systems without experimentation, thus saving researchers time and resources. - Analyzes and compares both classical and new competitive models and techniques - Offers a novel and unified competitive complexation / solvation theory that permits researchers to standardize some parameters, which decreases the need for experimentation at R&D - Presents examples of applications in multiple disciplines such as chemical, biochemical, radiochemical, pharmaceutical and analytical separation - Written by an outstanding scientist who is prolific in the field of separation science







Chemical Pretreatment of Nuclear Waste for Disposal


Book Description

Chemical pretreatment of nuclear wastes refers to the sequence of separations processes used to partition such wastes into a small volume of high-level waste for deep geologic disposal and a larger volume of low-level waste for disposal in a near-surface facility. Pretreatment of nuclear wastes now stored at several U. S. Department of Energy sites ranges from simple solid-liquid separations to more complex chemical steps, such as dissolution of sludges and removal of selected radionuclides, e. g. , 90Sr, 99Tc, 137CS, and TRU (transuranium) elements. The driving force for development of chemical pretreatment processes for nuclear wastes is the economic advantage of waste minimization as reflected in lower costs for near-surface disposal compared to the high cost of disposing of wastes in a deep geologic repository. This latter theme is expertly and authoritatively discussed in the introductory paper by J. and L. Bell. Seven papers in this volume describe several separations processes developed or being developed to pretreat the large volume of nuclear wastes stored at the US DOE Hanford and Savannah River sites. These papers include descriptions of the type and amount of important nuclear wastes stored at the Hanford and Savannah River sites as well as presently envisioned strategies for their treatment and final disposal. A paper by Strachan et al. discusses chemical and radiolytic mechanisms for the formation and release of potentially explosive hydrogen gas in Tank 241-SY-101 at the Hanford site.




Solvent Extraction and Ion Exchange in the Nuclear Fuel Cycle


Book Description

This book covers most aspects of the processing of these fuels, bringing together the current thinking of international scientists and presenting a picture of the applications of solvent and ion exchange in the fuel cycle.




New Separation Chemistry Techniques for Radioactive Waste and Other Specific Applications


Book Description

"Proceedings of a technical seminar jointly organized by the Commission of the European Communities (CEC), Directorate-General for Science, Research, and Development and by the Italian Commission for Nuclear and Alternative Energy Sources (ENEA)"--T.p. verso.




Nuclear Waste Cleanup Technologies and Opportunities


Book Description

One of the largest, most complicated and expensive environmental problems in the United States is the cleanup of nuclear wastes. The US Department of Energy (DOE) has approximately 4,000 contaminated sites covering tens of thousands of acres and replete with contaminated hazardous or radioactive waste, soil, or structures. In addition to high-level waste, it has more than 250,000 cubic meters of transuranic waste and millions of cubic meters of low-level radio-active waste. In addition, DOE is responsible for thousands of facilities awaiting decontamination, decommissioning, and dismantling. DOE and its predecessors have been involved in the management of radioactive wastes since 1943, when such wastes were first generated in significant quantities as by-products of nuclear weapons production. Waste connected with DOE's nuclear weapons complex has been accumulating as a result of various operations spanning over five decades. The cost estimates for nuclear waste cleanup in the United States have been rapidly rising. It has recently been estimated to be in a range from $200 to $350 billion. Costs could vary considerably based on future philosophies as to whether to isolate certain sites (the ""iron fence"" philosophy), or clean them up to a pristine condition (the ""greenfields"" philosophy). Funding will also be based on Congressional action that may reduce environmental cleanup, based on budget considerations.




Logos


Book Description




Ion Exchange and Solvent Extraction


Book Description

The growth in the world's nuclear industry, motivated by peaking world oil supplies, concerns about the greenhouse effect, and domestic needs for energy independence, has resulted in a heightened focus on the need for next-generation nuclear fuel-cycle technologies. Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19 provides a com