Observing and Modeling Earth's Energy Flows


Book Description

This book provides a comprehensive presentation of Earth’s energy flows and their consequences for the climate. The Earth’s climate as well as planetary climates in general, are broadly controlled by three fundamental parameters: the solar irradiance, the planetary albedo and the planetary emissivity. Space measurements indicate that these three quantities are remarkably stable. A minor decrease in planetary emissivity is consistent with theoretical calculations. This is due to the ongoing increase of atmospheric greenhouse gases making the atmosphere more opaque to long wave terrestrial radiation. As a consequence radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the incoming amount of heat from the sun. Present space-based systems cannot yet satisfactorily measure this imbalance, but the effect can be inferred from the measurements of the increase of heat in the oceans. Minor amounts of heat are also used to melt ice and to warm the atmosphere and the surface of the Earth. The book brings to fore the complexity of feedback processes of the Earth’s climate system and in particular the way clouds and aerosols affect the energy balance both directly and indirectly through feed-back loops driven by the dynamics of atmospheric, ocean and land surface processes. The book highlights recent scientific progress as well as remaining challenges. Previously published in Surveys in Geophysics, Volume 33, Nos. 3-4, 2012




Observing and Modeling Earth's Energy Flows


Book Description

This book provides a comprehensive presentation of Earth’s energy flows and their consequences for the climate. The Earth’s climate as well as planetary climates in general, are broadly controlled by three fundamental parameters: the solar irradiance, the planetary albedo and the planetary emissivity. Space measurements indicate that these three quantities are remarkably stable. A minor decrease in planetary emissivity is consistent with theoretical calculations. This is due to the ongoing increase of atmospheric greenhouse gases making the atmosphere more opaque to long wave terrestrial radiation. As a consequence radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the incoming amount of heat from the sun. Present space-based systems cannot yet satisfactorily measure this imbalance, but the effect can be inferred from the measurements of the increase of heat in the oceans. Minor amounts of heat are also used to melt ice and to warm the atmosphere and the surface of the Earth. The book brings to fore the complexity of feedback processes of the Earth’s climate system and in particular the way clouds and aerosols affect the energy balance both directly and indirectly through feed-back loops driven by the dynamics of atmospheric, ocean and land surface processes. The book highlights recent scientific progress as well as remaining challenges. Previously published in Surveys in Geophysics, Volume 33, Nos. 3-4, 2012




Geospace Mass and Energy Flow


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 104. The International Solar-Terrestrial Program (ISTP) was conceived by the space agencies of numerous countries as a coordinated effort to determine the global flow of mass, energy and momentum through the solar-terrestrial system. The physical region of interest extends from the Sun through the solar wind, to the terrestrial magnetosphere, down to the ionosphere, with the principal focus on the magnetosphere and its coupling with the solar wind and ionosphere. With the launch of NASA's POLAR spacecraft in February 1996, the major elements of the ISTP program were in place. This volume is one of the very first compendiums of both new observations and new modeling results either directly or indirectly deriving from this major ISTP undertaking.




Proceedings of ICE-SEAM 2021: Special Edition


Book Description

This e-book is a compilation of papers presented at the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021) - Virtual Platform, Malaysia on 23 November 2021. This special edition of proceedings has 17 selected papers that focus on IR4.0, including 3D printing and advanced materials, and how it might impact energy systems in numerous ways for sustainable development, especially during the pandemic COVID19.




Climate System Dynamics and Modeling


Book Description

An introductory textbook on all aspects of climate system dynamics and modelling for students, scientists and professionals.




Astronomy and Astrophysics Abstracts


Book Description

Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is devoted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documenta tion of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the average time interval between the date of receipt of the original literature and publication of the abstracts will not exceed eight months. This time interval is near to that achieved by monthly abstracting journals, compared to which our system of accumu lating abstracts for about six months offers the advantage of greater convenience for the user. Volume 31 contains literature published in 1982 and received before July 15, 1982; some older literature which was received late and which is not recorded in earlier volumes is also included. We acknowledge with thanks contributions to this volume by Dr. J. Bouska, Prague, who surveyed journals and publications in Czech and supplied us with abstracts in English .




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




NBS Special Publication


Book Description




SEASAT Special Issue II


Book Description