Upscaling Multiphase Flow in Porous Media


Book Description

This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.




Computational Methods for Multiphase Flows in Porous Media


Book Description

This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.




Numerical Treatment of Multiphase Flows in Porous Media


Book Description

The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.




Multiphase Flow in Permeable Media


Book Description

This book provides a fundamental description of multiphase fluid flow through porous rock, based on understanding movement at the pore, or microscopic, scale.




Multiphase Flow in Porous Media


Book Description

The study of multiphase flow through porous media is undergoing intense development, mostly due to the recent introduction of new methods. After the profound changes induced by percolation in the eighties, attention is nowadays focused on the pore scale. The physical situation is complex and only recently have tools become available that allow significant progress to be made in the area. This volume on Multiphase Flow in Porous Media, which is also being published as a special issue of the journal Transport in Porous Media, contains contributions on the lattice-Boltzmann technique, the renormalization technique, and semi-phenomenological studies at the pore level. Attention is mostly focused on two- and three-phase flows. These techniques are of tremendous importance for the numerous applications of multiphase flows in oil fields, unsaturated soils, the chemical industry, and environmental sciences.




Numerical Analysis of Multiscale Problems


Book Description

The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.




Upscaling of Single- And Two-Phase Flow in Reservoir Engineering


Book Description

This book describes fundamental upscaling aspects of single-phase/two-phase porous media flow for application in petroleum and environmental engineering. Many standard texts have been written about this subject. What distinguishes this work from other available books is that it covers fundamental issues that are frequently ignored but are relevant for developing new directions to extend the traditional approach, but with an eye on application. Our dependence on fossil energy is 80-90% and is only slowly decreasing. Of the estimated 37 ( 40) Gton/year, anthropogenic emissions of about 13 Gton/year of carbon dioxide remain in the atmosphere. An Exergy Return on Exergy Invested analysis shows how to obtain an unbiased quantification of the exergy budget and the carbon footprint. Thus, the intended audience of the book learns to quantify his method of optimization of recovery efficiencies supported by spreadsheet calculations. As to single-phase-one component fluid transport, it is shown how to deal with inertia, anisotropy, heterogeneity and slip. Upscaling requires numerical methods. The main application of transient flow is to find the reasons for reservoir impairment. The analysis benefits from solving the porous media flow equations using (numerical) Laplace transforms. The multiphase flow requires the definition of capillary pressure and relative permeabilities. When capillary forces dominate, we have dispersed (Buckley-Leverett flow). When gravity forces dominate, we obtain segregated flow (interface models). Miscible flow is described by a convection-dispersion equation. We give a simple proof that the dispersion coefficient can be approximated by Gelhar's relation, i.e., the product of the interstitial velocity, the variance of the logarithm of the permeability field and a correlation length. The book will appeal mostly to students and researchers of porous media flow in connection with environmental engineering and petroleum engineering.







Acta Numerica 2003: Volume 12


Book Description

An annual volume presenting substantive survey articles in numerical mathematics and scientific computing.




Numerical Treatment of Multiphase Flows in Porous Media


Book Description

The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.