Spectroscopy of Crystals Containing Rare Earth Ions


Book Description

``Spectroscopy of Crystals Containing Rare Earth Ions'' contains chapters on some key problems selected from a broad range of spectroscopic studies of RE-activated solids including both crystalline and glassy materials. Progress in crystal field theory is surveyed, an area which is basic to our understanding of the energy levels. The treatment of dynamical properties includes studies of coherence phenomena in isolated ions, energy transfer between ions and co-operative phenomena associated with ion-ion and ion-lattice interactions. In addition, the role of electron spins and nuclear spins is studied by light scattering and double resonance techniques. The presence of inhomogeneous broadening of spectral lines is observed and studied in many contexts, leading to new insights into general problems of the disordered state. Considerable attention is devoted to describing new experimental techniques whose development is of prime importance for progress in the spectroscopy of RE-activated solids. Many of these rely on the development and application of tunable lasers. At the moment this is a very active field of spectroscopy with more exciting developments likely to occur in the future.




Spectroscopy of Solids Containing Rare Earth Ions


Book Description

Spectroscopy of Crystals Containing Rare Earth Ions'' contains chapters on some key problems selected from a broad range of spectroscopic studies of RE-activated solids including both crystalline and glassy materials. Progress in crystal field theory is surveyed, an area which is basic to our understanding of the energy levels. The treatment of dynamical properties includes studies of coherence phenomena in isolated ions, energy transfer between ions and co-operative phenomena associated with ion-ion and ion-lattice interactions. In addition, the role of electron spins and nuclear spins is studied by light scattering and double resonance techniques. The presence of inhomogeneous broadening of spectral lines is observed and studied in many contexts, leading to new insights into general problems of the disordered state. Considerable attention is devoted to describing new experimental techniques whose development is of prime importance for progress in the spectroscopy of RE-activated solids. Many of these rely on the development and application of tunable lasers. At the moment this is a very active field of spectroscopy with more exciting developments likely to occur in the future.







Laser Materials


Book Description

This book focuses mainly on the spectroscopy of laser materials, physics of laser materials, laser crystals and laser glasses. The spectroscopic and laser properties of rare earth and transition metal ion-doped solid state materials are systematically described based on modern quantum optics. The aim of this book is to relate the laser and spectroscopic properties to the structure and chemical composition of materials. It emphasises the nonlinear optical effects in laser materials, which are widely used in high power laser systems. The development of advanced solid state laser devices depends greatly on new laser materials. Much progress has been made recently in the development of new laser materials, and this is summarized in the book.




Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology


Book Description

This book arises from the NATO Advanced Study Institute "Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology" held in Sozopol, Bulgaria, in September 2004. It comprises a variety of invited contributions by highly experienced educators, scientists, and industrialists, and is structured to cover important aspects of the field, from underlying principles, synthesis routes, characterizations, applications, and detailed considerations of commercial viability. In addition, the book consists of a selection of contributed articles describing various aspects of their current research and development activities. Several related topics on advanced electronic materials for sensor, optoelectronic and photovoltaic applications are also included in the book. It will be of considerable interest and value to those already pursuing or considering careers in the field of nanostructured materials and nanotechnology, in general. It also serves as a valuable source of information for those interested in related aspects of the field, such as science and technology of thin film materials and devices.




Theoretical Spectroscopy of Transition Metal and Rare Earth Ions


Book Description

This book describes in detail the main concepts of theoretical spectroscopy of transition metal and rare-earth ions. It shows how the energy levels of different electron configurations are formed and calculated for the ions in a free state and in crystals, how group theory can help in solving main spectroscopic problems, and how the modern DFT-based methods of calculations of electronic structure can be combined with the semi-empirical crystal field models. The style of presentation makes the book helpful for a wide audience ranging from graduate students to experienced researchers. Performance of optical materials crucially depends on the impurity ions intentionally introduced into the crystalline host materials. The color of these materials, their emission and absorption spectra can be understood by analyzing the relations between the electronic properties of impurity ions and host crystal structure, which constitutes the main content of this book. It describes in detail the main concepts of theoretical spectroscopy of transition metal and rare earth ions.




Composite Materials


Book Description

Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.




Spectroscopic Properties of Rare Earths in Optical Materials


Book Description

Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.




Engineering the Atom-Photon Interaction


Book Description

This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.