Spin Glasses And Biology


Book Description

This volume is an introduction to the application of techniques developed for the study of disordered systems to problems which arise in biology. Topics presented include neural networks, adaptation and evolution, maturation of the immune response, and protein dynamics and folding. This book will appeal to students and researchers interested in statistical and condensed matter physics, glasses and spin glasses, and biophysics.




Spin Glasses and Complexity


Book Description

Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.




Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications


Book Description

This book contains a detailed and self-contained presentation of the replica theory of infinite range spin glasses. The authors also explain recent theoretical developments, paying particular attention to new applications in the study of optimization theory and neural networks. About two-thirds of the book are a collection of the most interesting and pedagogical articles on the subject.




An Introduction to the Theory of Spin Glasses and Neural Networks


Book Description

This book aims to describe in simple terms the new area of statistical mechanics known as spin-glasses, encompassing systems in which quenched disorder is the dominant factor. The book begins with a non-mathematical explanation of the problem, and the modern understanding of the physics of the spin-glass state is formulated in general terms. Next, the 'magic' of the replica symmetry breaking scheme is demonstrated and the physics behind it discussed. Recent experiments on real spin-glass materials are briefly described to demonstrate how this somewhat abstract physics can be studied in the laboratory. The final chapters of the book are devoted to statistical models of neural networks.The material here is self-contained and should be accessible to students with a basic knowledge of theoretical physics and statistical mechanics. It has been used for a one-term graduate lecture course at the Landau Institute for Theoretical Physics.




Spin Glasses


Book Description

A comprehensive account of the theory, experimental work and computer modelling of spin glasses.




Spin Glasses and Random Fields


Book Description

The last few years have seen many developments in the study of ?frustrated? systems, such as spin glasses and random fields. In addition, the application of the idea of spin glasses to other branches of physics, such as vortex lines in high temperature superconductors, protein folding, structural glasses, and the vulcanization of rubber, has been flourishing. The earlier reviews are several years old, so now is an appropriate time to summarize the recent developments. The articles in this book have been written by leading researchers and include theoretical and experimental studies, and large-scale numerical work (using state-of-the-art algorithms designed specifically for spin-glass-type problems), as well as analytical studies.




Spin Glasses and Related Problems


Book Description

Three scientists from the L.D. Landau Institute of Theoretical Physics, Moscow, review recent developments in the theory of spin glasses and related strongly disordered systems. They discuss in particular the problems of irreversibility and nonergodicity in the framework of the mean field theory, a phase transition in three- dimensional spin glasses, and glass-like systems with hidden correlations. Addressed to researchers in theoretical physics. Book club price $59. Annotation copyrighted by Book News, Inc., Portland, OR




Spin Glasses and Other Frustrated Systems


Book Description

Debashish Chowdhury's critical review of more than a thousand papers not only identifies the complexities involved in the theoretical understanding of the real spin glasses but also explains the physical concepts and the mathematical formalisms that have been used successfully in solving the infiniterange model. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Perspectives on Spin Glasses


Book Description

Presenting and developing the theory of spin glasses for mathematical physicists and probabilists working in disordered systems.




An Introduction To The Theory Of Spin Glasses And Neural Networks


Book Description

This book aims to describe in simple terms the new area of statistical mechanics known as spin-glasses, encompassing systems in which quenched disorder is the dominant factor. The book begins with a non-mathematical explanation of the problem, and the modern understanding of the physics of the spin-glass state is formulated in general terms. Next, the 'magic' of the replica symmetry breaking scheme is demonstrated and the physics behind it discussed. Recent experiments on real spin-glass materials are briefly described to demonstrate how this somewhat abstract physics can be studied in the laboratory. The final chapters of the book are devoted to statistical models of neural networks.The material here is self-contained and should be accessible to students with a basic knowledge of theoretical physics and statistical mechanics. It has been used for a one-term graduate lecture course at the Landau Institute for Theoretical Physics.