Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry


Book Description

In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.




An Introduction to Twistor Theory


Book Description

Evolving from graduate lectures given in London and Oxford, this introduction to twistor theory and modern geometrical approaches to space-time structure will provide graduate students with the basics of twistor theory, presupposing some knowledge of special relativity and differenttial geometry.




Techniques of Differential Topology in Relativity


Book Description

Acquaints the specialist in relativity theory with some global techniques for the treatment of space-times and will provide the pure mathematician with a way into the subject of general relativity.




Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields


Book Description

Volume 1 introduces and systematically develops the calculus in a first detailed exposition of this technique which provides shortcuts for some very tedious calculations.




The Mathematical Theory of Black Holes


Book Description

Part of the reissued Oxford Classic Texts in the Physical Sciences series, this book was first published in 1983, and has swiftly become one of the great modern classics of relativity theory. It represents a personal testament to the work of the author, who spent several years writing and working-out the entire subject matter. The theory of black holes is the most simple and beautiful consequence of Einstein's relativity theory. At the time of writing there was no physical evidence for the existence of these objects, therefore all that Professor Chandrasekhar used for their construction were modern mathematical concepts of space and time. Since that time a growing body of evidence has pointed to the truth of Professor Chandrasekhar's findings, and the wisdom contained in this book has become fully evident.




The Theory of Spinors


Book Description

The French mathematician Élie Cartan (1869–1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities. The book is divided into two parts. The first is devoted to generalities on the group of rotations in n-dimensional space and on the linear representations of groups, and to the theory of spinors in three-dimensional space. Finally, the linear representations of the group of rotations in that space (of particular importance to quantum mechanics) are also examined. The second part is devoted to the theory of spinors in spaces of any number of dimensions, and particularly in the space of special relativity (Minkowski space). While the basic orientation of the book as a whole is mathematical, physicists will be especially interested in the final chapters treating the applications of spinors in the rotation and Lorentz groups. In this connection, Cartan shows how to derive the "Dirac" equation for any group, and extends the equation to general relativity. One of the greatest mathematicians of the 20th century, Cartan made notable contributions in mathematical physics, differential geometry, and group theory. Although a profound theorist, he was able to explain difficult concepts with clarity and simplicity. In this detailed, explicit treatise, mathematicians specializing in quantum mechanics will find his lucid approach a great value.




Black Holes in Higher Dimensions


Book Description

The first book devoted to black holes in more than four dimensions, for graduate students and researchers.




Solitons And Particles


Book Description

This is the most up-to-date book on solitons and is divided into two parts. Part 1: Detailed introductory lectures on different aspects of solitons plus lectures on the mathematical aspects on this subject. Part 2: Is a collection of reprints on mathematical theories of solitons, solitons in field theory, solitons as particles and their properties, especially topological and physical properties. This book is aimed at a wide audience of physicists and mathematicians. It is an ideal reference book for young researchers and graduate students.




Differential Geometry and Lie Groups for Physicists


Book Description

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.




The Scalar-Tensor Theory of Gravitation


Book Description

A pedagogical overview of the theoretical ideas behind the cosmological constant problem, in particular the scalar-tensor theory, which is one of the most popular alternative theories of gravitation. Covering many developments in the field, including branes and quintessence, it will be an invaluable resource for graduate students and researchers alike.