Stability Analysis and Controller Design of Local Model Networks


Book Description

This book treats various methods for stability analysis and controller design of local model networks (LMNs). LMNs have proved to be a powerful tool in nonlinear dynamic system identification. Their system architecture is more suitable for controller design compared to alternative approximation methods. The main advantage is that linear controller design methods can be, at least locally, applied and combined with nonlinear optimization to calibrate stable state feedback as well as PID controller. The calibration of stable state-feedback controllers is based on the closed loop stability analysis methods. Here, global LMIs (Linear Matrix Inequalities) can be derived and numerically solved. For LMN based nonlinear PID controllers deriving global LMIs is not possible. Thus, two approaches are treated in this book. The first approach works iteratively to get LMIs in each iteration step. The second approach uses a genetic algorithm to determine the PID controller parameters where for each individual the stability is checked. It allows simultaneous enhancement of (competing) optimization criteria.




Local Stability and Ultimate Boundedness in the Control of Robot Manipulators


Book Description

This book offers a unique compendium of the authors ́ own research on the use of theoretical stability analysis, showing how to take advantage of local stability design and ultimate boundedness for practical robot control. It addresses researchers and postgraduate students dealing with control theory, particularly with nonlinear systems. Thanks to the numerous worked examples, it could also be used as a textbook in postgraduate courses.




Radial Basis Function (RBF) Neural Network Control for Mechanical Systems


Book Description

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.




Linear Controller Design


Book Description




Modeling, Control, Estimation, and Optimization for Microgrids


Book Description

Due to increasing economic and environmental pressures, small-scale grids have received increasing attention in the last fifteen years. These renewable sources, such as solar PVs, wind turbines, and fuel cells, integrated with grid, have changed the way we live our lives. This book describes microgrid dynamics modeling and nonlinear control issues from introductory to the advanced steps. The book addresses the most relevant challenges in microgrid protection and control including modeling, uncertainty, stability issues, local control, coordination control, power quality, and economic dispatch.




Fuzzy Modeling and Control


Book Description

In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.




Proceedings of the IECON '97


Book Description

With the dynamic global environment, rapid technology changes, the need for updated management skills will be of paramount importance. This conference focuses on applications of electronics in industry, especially in the areas of control and instrumentation.




Feedback Systems


Book Description

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory




Developments in Soft Computing


Book Description

Soft Computing has come of age. In particular, Artificial Neural Networks, Fuzzy Logic and Evolutionary Computing now play an important role in many domains where traditional techniques have been found wanting. As this volume confirms, hybrid solutions that combine more than one of the Soft Computing approaches are particularly successful in many problem areas. This volume contains papers presented at the International Conference on Recent Advances in Soft Computing 2000 at De Montfort University in Leicester. The contributions cover both theoretical developments and practical applications in the various areas of Soft Computing.