Lectures on Engineering Mechanics


Book Description

Lectures on Engineering Mechanics: Statics and Dynamics is suitable for Bachelor's level education at schools of engineering with an academic profile. It gives a concise and formal account of the theoretical framework of elementary Engineering Mechanics. A distinguishing feature of this textbook is that its content is consistently structured into postulates, definitions and theorems, with rigorous derivations. The reader finds support in a wealth of illustrations and a cross-reference for each deduction. This textbook underscores the importance of properly drawn free-body diagrams to enhance the problem-solving skills of students. Table of contents I. STATICS . . . 1. Introduction . . . 2. Force-couple systems . . . 3. Static equilibrium . . . 4. Center of mass . . . 5. Distributed and internal forces . . . 6. Friction II. PARTICLE DYNAMICS . . . 7. Planar kinematics of particles . . . 8. Kinetics of particles . . . 9. Work-energy method for particles . . . 10. Momentum and angular momentum of particles . . . 11. Harmonic oscillators III. RIGID BODY DYNAMICS . . . 12. Planar kinematics of rigid bodies . . . 13. Planar kinetics of rigid bodies . . . 14. Work-energy method for rigid bodies . . . 15. Impulse relations for rigid bodies . . . 16. Three-dimensional kinematics of rigid bodies . . . 17. Three-dimensional kinetics of rigid bodies APPENDIX . . . A. Selected mathematics . . . B. Quantity, unit and dimension . . . C. Tables




Statistical Physics: Statics, Dynamics And Renormalization


Book Description

The material presented in this invaluable textbook has been tested in two courses. One of these is a graduate-level survey of statistical physics; the other, a rather personal perspective on critical behavior. Thus, this book defines a progression starting at the book-learning part of graduate education and ending in the midst of topics at the research level. To supplement the research-level side the book includes some research papers. Several of these are classics in the field, including a suite of six works on self-organized criticality and complexity, a pair on diffusion-limited aggregation, some papers on correlations near critical points, a few of the basic sources on the development of the real-space renormalization group, and several papers on magnetic behavior in a plain geometry. In addition, the author has included a few of his own papers.







Statics and Dynamics with Background Mathematics


Book Description

This book uniquely covers both Statics and Dynamics together with a section on background mathematics, providing the student with everything needed to complete typical first year undergraduate courses. Students often find it difficult to visualize problems and grasp the mathematics, but Roberts' friendly approach makes life easier for both student and tutor, tackling concepts from first principles with many examples, exercises and helpful diagrams. The revision section on introductory mathematics is a huge bonus, allowing students to catch up on the pre-requisite mathematics needed to work through both courses.




Dynamics of Particles and Rigid Bodies


Book Description

A unique approach to teaching particle and rigid body dynamics using solved illustrative examples and exercises to encourage self-learning The study of particle and rigid body dynamics is a fundamental part of curricula for students pursuing graduate degrees in areas involving dynamics and control of systems. These include physics, robotics, nonlinear dynamics, aerospace, celestial mechanics and automotive engineering, among others. While the field of particle and rigid body dynamics has not evolved significantly over the past seven decades, neither have approaches to teaching this complex subject. This book fills the void in the academic literature by providing a uniquely stimulating, “flipped classroom” approach to teaching particle and rigid body dynamics which was developed, tested and refined by the author and his colleagues over the course of many years of instruction at both the graduate and undergraduate levels. Complete with numerous solved illustrative examples and exercises to encourage self-learning in a flipped-classroom environment, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach: Provides detailed, easy-to-understand explanations of concepts and mathematical derivations Includes numerous flipped-classroom exercises carefully designed to help students comprehend the material covered without actually solving the problem for them Features an extensive chapter on electromechanical modelling of systems involving particle and rigid body motion Provides examples from the state-of-the-art research on sensing, actuation, and energy harvesting mechanisms Offers access to a companion website featuring additional exercises, worked problems, diagrams and a solutions manual Ideal as a textbook for classes in dynamics and controls courses, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach is a godsend for students pursuing advanced engineering degrees who need to master this complex subject. It will also serve as a handy reference for professional engineers across an array of industrial domains.




Introduction to Physics


Book Description

Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure of the solid .The final chapters consider the laws of the thermodynamic and their applications. This book will prove useful to physicists, scientists, thermodynamics engineers.




Engineering Mechanics


Book Description

This book is tailor-made as per the syllabus of Engineering Mechanics offered in the first year of undergraduate students of Engineering. The book covers both Statics and Dynamics, and provides the students with a clear and thorough presentation of the theory as well as the applications. The diagrams and problems in the book familiarize students with actual situations encountered in engineering.




Fluid and Particle Mechanics


Book Description

Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of the Torricellian law of efflux. This book discusses as well the use of centrifugal pumps for exchanging energy between a mechanical system and a liquid. The final chapter deals with the theory of settling, which finds an extensive application in several industrially important processes. This book is a valuable resource for chemical engineers, students, and researchers.