The Radon Transform and Medical Imaging


Book Description

This book surveys the main mathematical ideas and techniques behind some well-established imaging modalities such as X-ray CT and emission tomography, as well as a variety of newly developing coupled-physics or hybrid techniques, including thermoacoustic tomography. The Radon Transform and Medical Imaging emphasizes mathematical techniques and ideas arising across the spectrum of medical imaging modalities and explains important concepts concerning inversion, stability, incomplete data effects, the role of interior information, and other issues critical to all medical imaging methods. For nonexperts, the author provides appendices that cover background information on notation, Fourier analysis, geometric rays, and linear operators. The vast bibliography, with over 825 entries, directs readers to a wide array of additional information sources on medical imaging for further study.




Medical Imaging Systems


Book Description

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.




Statistics of Medical Imaging


Book Description

More work is being done in the statistical aspects of medical imaging, and this book fills the gap to provide a unified framework of study by presenting a complete look at medical imaging and statistics - from the statistical aspects of imaging technology to the statistical analysis of images. It provides technicians and students with the statistical principles that underlay medical imaging, as required reference material for researchers involved in the design of new technology. Illustrations are included throughout as are many real examples, and algorithms. The text also includes exercises developed out of the author's many years experience with studying the statistics of medical imaging.




Monte Carlo Techniques in Radiation Therapy


Book Description

About ten years after the first edition comes this second edition of Monte Carlo Techniques in Radiation Therapy: Introduction, Source Modelling, and Patient Dose Calculations, thoroughly updated and extended with the latest topics, edited by Frank Verhaegen and Joao Seco. This book aims to provide a brief introduction to the history and basics of Monte Carlo simulation, but again has a strong focus on applications in radiotherapy. Since the first edition, Monte Carlo simulation has found many new applications, which are included in detail. The applications sections in this book cover the following: Modelling transport of photons, electrons, protons, and ions Modelling radiation sources for external beam radiotherapy Modelling radiation sources for brachytherapy Design of radiation sources Modelling dynamic beam delivery Patient dose calculations in external beam radiotherapy Patient dose calculations in brachytherapy Use of artificial intelligence in Monte Carlo simulations This book is intended for both students and professionals, both novice and experienced, in medical radiotherapy physics. It combines overviews of development, methods, and references to facilitate Monte Carlo studies.




Computed Tomography


Book Description

This book offers a comprehensive and topical depiction of advances in CT imaging. CT has become a leading medical imaging modality, thanks to its superb spatial and temporal resolution to depict anatomical details. New advances have further extended the technology to provide physiological information, enabling a wide and expanding range of clinical applications. The text covers the latest advancements in CT technology and clinical applications for a variety of CT types and imaging methods. The content is presented in seven parts to offer a structure across a board coverage of CT: CT Systems, CT Performance, CT Practice, Spectral CT, Quantitative CT, Functional CT, and Special Purpose CT. Each contain chapters written by leading experts in the field, covering CT hardware and software innovations, CT operation, CT performance characterization, functional and quantitative applications, and CT systems devised for specific anatomical applications. This book is an ideal resource for practitioners of CT applications in medicine, including physicians, trainees, engineers, and scientists.




Computed Tomography


Book Description

X-ray computed tomography (CT) continues to experience rapid growth, both in basic technology and new clinical applications. Seven years after its first edition, Computed Tomography: Principles, Design, Artifacts, and Recent Advancements, Second Edition, provides an overview of the evolution of CT, the mathematical and physical aspects of the technology, and the fundamentals of image reconstruction algorithms. Image display is examined from traditional methods used through the most recent advancements. Key performance indices, theories behind the measurement methodologies, and different measurement phantoms in image quality are discussed. The CT scanner is broken down into components to provide the reader with an understanding of their function, their latest advances, and their impact on the CT system. General descriptions and different categories of artifacts, their causes, and their corrections are considered at length. Given the high visibility and public awareness of the impact of x-ray radiation, the second edition features a new chapter on x-ray dose and presents different dose reduction techniques ranging from patient handling, optimal data acquisition, image reconstruction, and post-process. Based on the advancements over the past five years, the second edition added new sections on cone beam reconstruction algorithms, nonconventional helical acquisition and reconstruction, new reconstruction approaches, and dual-energy CT. Finally, new to this edition is a set of problems for each chapter, providing opportunities to enhance reader comprehension and practice the application of covered material.




Emission Tomography


Book Description

PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork




Principles of Computerized Tomographic Imaging


Book Description

A comprehensive, tutorial-style introduction to the algorithms necessary for tomographic imaging.




Medical Image Reconstruction


Book Description

"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.




Machine Learning for Tomographic Imaging


Book Description

Machine learning represents a paradigm shift in tomographic imaging, and image reconstruction is a new frontier of machine learning. This book will meet the needs of those who want to catch the wave of smart imaging. The book targets graduate students and researchers in the imaging community. Open network software, working datasets, and multimedia will be included. The first of its kind in the emerging field of deep reconstruction and deep imaging, Machine Learning for Tomographic Imaging presents the most essential elements, latest progresses and an in-depth perspective on this important topic.