Stellar Remnants


Book Description

Three eminent scientists, each well known for the clarity of their writing, present for students and researchers what is known about the internal structure, origin and evolution of White Dwarfs, Neutron Stars and Black Holes, all objects at the final stage of stellar evolution. They cover fascinating topics such as pulsation of white dwarfs, millisecond pulsars or the dynamics around black holes. The book is written for graduate students in astrophysics, but is also of interest to professional astronomers and physicists.




Essential Astrophysics


Book Description

This book takes a reader on a tour of astronomical phenomena: from the vastness of the interstellar medium, to the formation and evolution of stars and planetary systems, through to white dwarfs, neutron stars, and black holes, the final objects of the stellar graveyard. At its heart, this book is a journey through the evolutionary history of the birth, life, and death of stars, but detours are also made to other related interesting topics. This highly accessible story of the observed contents of our Galaxy includes intuitive explanations, informative diagrams, and basic equations, as needed. It is an ideal guide for undergraduates with some physics and mathematics background who are studying astronomy and astrophysics. It is also accessible to interested laypeople, thanks to its limited equations. Key features: Includes coverage of some of the latest exciting research from the field, including star formation, exoplanets, and black holes Can be utilised as a stand-alone textbook for a one-term course or as a supplementary textbook for a more comprehensive course on astronomy and astrophysics Authored by a team respected for research, education, and outreach Shantanu Basu is an astrophysicist and a professor at The University of Western Ontario, Canada. He is known for research contributions on the formation of gravitationally-collapsed objects in the universe: stars, planets, brown dwarfs, and supermassive black holes. He is one of the originators of the migrating embryo scenario of episodic accretion onto young stars. He has been recognized for his teaching excellence and his contributions to the astronomical community include organizing many conferences and training schools. Pranav Sharma is an astronomer and science historian known for his work on the history of the Indian Space Program. He has curated the Space Museum at the B. M. Birla Science Centre (Hyderabad, India). He is in-charge of the history of Indo-French scientific partnership project supported by the Embassy of France in India. He is a national-award-winning science communicator and has extensively worked on the popularization of astronomy education in India.




Physics and Evolution of Supernova Remnants


Book Description

Written by a leading expert, this monograph presents recent developments on supernova remnants, with the inclusion of results from various satellites and ground-based instruments. The book details the physics and evolution of supernova remnants, as well as provides an up-to-date account of recent multiwavelength results. Supernova remnants provide vital clues about the actual supernova explosions from X-ray spectroscopy of the supernova material, or from the imprints the progenitors had on the ambient medium supernova remnants are interacting with - all of which the author discusses in great detail. The way in which supernova remnants are classified, is reviewed and explained early on. A chapter is devoted to the related topic of pulsar wind nebulae, and neutron stars associated with supernova remnants. The book also includes an extended part on radiative processes, collisionless shock physics and cosmic-ray acceleration, making this book applicable to a wide variety of astronomical sub-disciplines. With its coverage of fundamental physics and careful review of the state of the field, the book serves as both textbook for advanced students and as reference for researchers in the field.




ESSCIRC '97


Book Description




The Big Bang Explained


Book Description

The Big Bang theory describes the very beginnings of the universe, when it was infinitesimally small and infinitely dense, and follows its rapid expansion and evolution, from the formation of nuclei within the first few minutes to the creation of the first galaxies a billion years later. The Big Bang theory is a cornerstone of modern cosmology, and although astronomers cannot directly observe the birth of the universe, the theory is widely accepted because it makes concrete predictions of the current observable universe, which have been tested repeatedly with striking success. Supporting the Next Generation Science Standards' emphasis on scientific collection and analysis of data and evidence-based theories, this book will help students understand the observational evidence supporting the Big Bang theory and speculate on the ultimate fate of the universe it implies.




Supernovae


Book Description

Contains two reviews of astrophysical interest: Supernovae and Supernova Remnants, and Observations of Cosmic Gamma-Ray Bursts. (NW) Annotation copyrighted by Book News, Inc., Portland, OR




Genesis and Propagation of Cosmic Rays


Book Description

Proceedings of the NATO Advanced Study Institute, Erice, Sicily, Italy, June 1-9, 1986




The High Energy Universe


Book Description

In the last two decades, cosmology, particle physics, high energy astrophysics and gravitational physics have become increasingly interwoven. The intense activity taking place at the intersection of these disciplines is constantly progressing, with the advent of major cosmic ray, neutrino, gamma ray and gravitational wave observatories for studying cosmic sources, along with the construction of particle physics experiments using beams and signals of cosmic origin. This book provides an up-to-date overview of the recent advances and potential future developments in this area, discussing both the main theoretical ideas and experimental results. It conveys the challenges but also the excitement associated with this field. Written in a concise yet accessible style, explaining technical details with examples drawn from everyday life, it will be suitable for undergraduate and graduate students, as well as other readers interested in the subject. Colour versions of a selection of the figures are available at www.cambridge.org/9780521517003.




Coevolution of Black Holes and Galaxies: Volume 1, Carnegie Observatories Astrophysics Series


Book Description

This book was originally published in 2004. Black holes are among the most mysterious objects in the Universe. Weighing up to several billion Suns, massive black holes have long been suspected to be the central powerhouses of energetic phenomena such as quasars. Advances in astronomy have not only provided spectacular proof of this long-standing paradigm, but have revealed the unexpected result that far from being rare, exotic beasts, they inhabit the center of virtually all large galaxies. Candidate black holes have been identified in increasingly large numbers of galaxies, both inactive and active, to the point where statistical studies are possible. Fresh work has highlighted the close connection between the formation, growth, and evolution of supermassive black holes and their host galaxies. This volume contains the invited lectures from an international symposium that was held to explore this exciting theme, and is a valuable review for professional astronomers and graduate students.




An Introduction to Galaxies and Cosmology


Book Description

This introductory textbook has been designed by a team of experts for elementary university courses in astronomy and astrophysics. It starts with a detailed discussion of the structure and history of our own Galaxy, the Milky Way, and goes on to give a general introduction to normal and active galaxies including models for their formation and evolution. The second part of the book provides an overview of the wide range of cosmological models and discusses the Big Bang and the expansion of the Universe. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur astronomers as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials.