Stochastic Computing: Techniques and Applications


Book Description

This book covers the history and recent developments of stochastic computing. Stochastic computing (SC) was first introduced in the 1960s for logic circuit design, but its origin can be traced back to von Neumann's work on probabilistic logic. In SC, real numbers are encoded by random binary bit streams, and information is carried on the statistics of the binary streams. SC offers advantages such as hardware simplicity and fault tolerance. Its promise in data processing has been shown in applications including neural computation, decoding of error-correcting codes, image processing, spectral transforms and reliability analysis. There are three main parts to this book. The first part, comprising Chapters 1 and 2, provides a history of the technical developments in stochastic computing and a tutorial overview of the field for both novice and seasoned stochastic computing researchers. In the second part, comprising Chapters 3 to 8, we review both well-established and emerging design approaches for stochastic computing systems, with a focus on accuracy, correlation, sequence generation, and synthesis. The last part, comprising Chapters 9 and 10, provides insights into applications in machine learning and error-control coding.




Stochastic Computing


Book Description

This book covers the history and recent developments of stochastic computing. Stochastic computing (SC) was first introduced in the 1960s for logic circuit design, but its origin can be traced back to von Neumann's work on probabilistic logic. In SC, real numbers are encoded by random binary bit streams, and information is carried on the statistics of the binary streams. SC offers advantages such as hardware simplicity and fault tolerance. Its promise in data processing has been shown in applications including neural computation, decoding of error-correcting codes, image processing, spectral transforms and reliability analysis. There are three main parts to this book. The first part, comprising Chapters 1 and 2, provides a history of the technical developments in stochastic computing and a tutorial overview of the field for both novice and seasoned stochastic computing researchers. In the second part, comprising Chapters 3 to 8, we review both well-established and emerging design approaches for stochastic computing systems, with a focus on accuracy, correlation, sequence generation, and synthesis. The last part, comprising Chapters 9 and 10, provides insights into applications in machine learning and error-control coding.




Stochastic Global Optimization


Book Description

Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller




Intelligent Computing Applications for Sustainable Real-World Systems


Book Description

This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed.




Stochastic Optimization


Book Description

This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.




Computing Technologies and Applications


Book Description

Making use of digital technology for social care is a major responsibility of the computing domain. Social care services require attention for ease in social systems, e-farming, and automation, etc. Thus, the book focuses on suggesting software solutions for supporting social issues, such as health care, learning about and monitoring for disabilities, and providing technical solutions for better living. Technology is enabling people to have access to advances so that they can have better health. To undergo the digital transformation, the current processes need to be completely re-engineered to make use of technologies like the Internet of Things (IoT), big data analytics, artificial intelligence, and others. Furthermore, it is also important to consider digital initiatives in tandem with their cloud strategy instead of treating them in isolation. At present, the world is going through another, possibly even stronger revolution: the use of recent computing models to perform complex cognitive tasks to solve social problems in ways that were previously either highly complicated or extremely resource intensive. This book not only focuses the computing technologies, basic theories, challenges, and implementation but also covers case studies. It focuses on core theories, architectures, and technologies necessary to develop and understand the computing models and their applications. The book also has a high potential to be used as a recommended textbook for research scholars and post-graduate programs. The book deals with a problem-solving approach using recent tools and technology for problems in health care, social care, etc. Interdisciplinary studies are emerging as both necessary and practical in universities. This book helps to improve computational thinking to "understand and change the world’. It will be a link between computing and a variety of other fields. Case studies on social aspects of modern societies and smart cities add to the contents of the book to enhance book adoption potential. This book will be useful to undergraduates, postgraduates, researchers, and industry professionals. Every chapter covers one possible solution in detail, along with results.




Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes


Book Description

Stochastic global optimization methods and applications to chemical, biochemical, pharmaceutical and environmental processes presents various algorithms that include the genetic algorithm, simulated annealing, differential evolution, ant colony optimization, tabu search, particle swarm optimization, artificial bee colony optimization, and cuckoo search algorithm. The design and analysis of these algorithms is studied by applying them to solve various base case and complex optimization problems concerning chemical, biochemical, pharmaceutical, and environmental engineering processes. Design and implementation of various classical and advanced optimization strategies to solve a wide variety of optimization problems makes this book beneficial to graduate students, researchers, and practicing engineers working in multiple domains. This book mainly focuses on stochastic, evolutionary, and artificial intelligence optimization algorithms with a special emphasis on their design, analysis, and implementation to solve complex optimization problems and includes a number of real applications concerning chemical, biochemical, pharmaceutical, and environmental engineering processes.




Numerical Methods for Stochastic Computations


Book Description

The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples




Stochastic Methods in Neuroscience


Book Description

Great interest is now being shown in computational and mathematical neuroscience, fuelled in part by the rise in computing power, the ability to record large amounts of neurophysiological data, and advances in stochastic analysis. These techniques are leading to biophysically more realistic models. It has also become clear that both neuroscientists and mathematicians profit from collaborations in this exciting research area.Graduates and researchers in computational neuroscience and stochastic systems, and neuroscientists seeking to learn more about recent advances in the modelling and analysis of noisy neural systems, will benefit from this comprehensive overview. The series of self-contained chapters, each written by experts in their field, covers key topics such as: Markov chain models for ion channel release; stochastically forced single neurons and populations of neurons; statistical methods for parameterestimation; and the numerical approximation of these stochastic models.Each chapter gives an overview of a particular topic, including its history, important results in the area, and future challenges, and the text comes complete with a jargon-busting index of acronyms to allow readers to familiarize themselves with the language used.




Probability and Computing


Book Description

Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.