Stochastic Methods for Modeling and Predicting Complex Dynamical Systems


Book Description

This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. An emphasis is placed on the balance between computational efficiency and modeling accuracy, providing readers with ideas to build useful models in practice. Successful modeling of complex systems requires a comprehensive use of qualitative and quantitative modeling approaches, novel efficient computational methods, physical intuitions and thinking, as well as rigorous mathematical theories. As such, mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools are presented. Both theoretical and numerical approaches are included, allowing readers to choose suitable methods in different practical situations. The author provides practical examples and motivations when introducing various mathematical and stochastic tools and merges mathematics, statistics, information theory, computational science, and data science. In addition, the author discusses how to choose and apply suitable mathematical tools to several disciplines including pure and applied mathematics, physics, engineering, neural science, material science, climate and atmosphere, ocean science, and many others. Readers will not only learn detailed techniques for stochastic modeling and prediction, but will develop their intuition as well. Important topics in modeling and prediction including extreme events, high-dimensional systems, and multiscale features are discussed.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Stochastic Climate Models


Book Description

A collection of articles written by mathematicians and physicists, designed to describe the state of the art in climate models with stochastic input. Mathematicians will benefit from a survey of simple models, while physicists will encounter mathematically relevant techniques at work.




11th International Symposium on Process Systems Engineering - PSE2012


Book Description

While the PSE community continues its focus on understanding, synthesizing, modeling, designing, simulating, analyzing, diagnosing, operating, controlling, managing, and optimizing a host of chemical and related industries using the systems approach, the boundaries of PSE research have expanded considerably over the years. While early PSE research was largely concerned with individual units and plants, the current research spans wide ranges of scales in size (molecules to processing units to plants to global multinational enterprises to global supply chain networks; biological cells to ecological webs) and time (instantaneous molecular interactions to months of plant operation to years of strategic planning). The changes and challenges brought about by increasing globalization and the the common global issues of energy, sustainability, and environment provide the motivation for the theme of PSE2012: Process Systems Engineering and Decision Support for the Flat World. Each theme includes an invited chapter based on the plenary presentation by an eminent academic or industrial researcher Reports on the state-of-the-art advances in the various fields of process systems engineering Addresses common global problems and the research being done to solve them




Introduction to Modeling and Analysis of Stochastic Systems


Book Description

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.




Predictive Approaches to Control of Complex Systems


Book Description

A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequently encountered complex dynamical phenomena and are practically applicable in the proposed predictive control approaches. Furthermore, unsupervised learning methods that can be used for complex-system identification are treated. Finally, several useful predictive control algorithms for complex systems are proposed and their particular advantages and drawbacks are discussed. The presented modeling, identification and control approaches are complemented by illustrative examples. The book is aimed towards researches and postgraduate students interested in modeling, identification and control, as well as towards control engineers needing practically usable advanced control methods for complex systems.




Mathematical Modeling of Earth's Dynamical Systems


Book Description

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html




Dynamic Mode Decomposition


Book Description

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.




Intelligent Satellite Design and Implementation


Book Description

Integrate cutting-edge technology into spacecraft design with this groundbreaking work Artificial intelligence and machine learning have revolutionized virtually every area of computing and complex engineering, and the design of satellite spacecraft is no exception. Intelligent satellites are increasingly capable of human-like perception, decision-making, and operations, and their problem-solving capacities are still expanding. As AI and machine learning continue to advance, their integration into satellite manufacture will only deepen. Intelligent Satellite Design and Implementation seeks to understand the foundations of this integration and its likely directions in the coming years. Beginning from the basic principles of interaction between artificial intelligence and satellite design and mission planning, the book analyzes a series of current or potential areas of technological advancement to create a comprehensive overview of the subject. Intelligent Satellite Design and Implementation readers will also find: Background information on the introduction and development of artificial intelligence Detailed discussion of topics including autonomous satellite operation, remote sensing satellites, and many more Over 100 illustrations and tables to reinforce key concepts Intelligent Satellite Design and Implementation is ideal for graduate students and advanced undergraduates in engineering, computing, and spacecraft design programs, as well as researchers in these and related fields.




Concepts and Methodologies for Modeling and Simulation


Book Description

This comprehensive text presents cutting-edge advances in the theory and methodology of modeling and simulation (M&S) and reveals how this work has been influenced by the fundamental contributions of Prof. Tuncer Ören to this field. Exploring the synergies among the domains of M&S and systems engineering (SE), the book describes how M&S and SE can help to address the complex problems identified as “Grand Challenges” more effectively under a model-driven and simulation-directed systems engineering framework. Features: examines frameworks for the development of advanced simulation methodologies; presents a focus on advanced modeling methodologies; reviews the reliability and quality assurance of models; discusses the specification and simulation of human and social behavior, including models of personality, emotions, conflict management, perception and anticipation; provides a survey of the body of knowledge in M&S; highlights the foundations established by the pioneering work of Prof. Tuncer Ören.




Recent Books