Stochastic Processes for Insurance and Finance


Book Description

The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Stochastic Processes for Insurance and Finance offers a thorough yet accessible reference for researchers and practitioners of insurance mathematics. Building on recent and rapid developments in applied probability the authors describe in general terms models based on Markov processes, martingales and various types of point processes. Discussing frequently asked insurance questions, the authors present a coherent overview of this subject and specifically address: the principle concepts of insurance and finance practical examples with real life data numerical and algorithmic procedures essential for modern insurance practices Assuming competence in probability calculus, this book will provide a rigorous treatment of insurance risk theory recommended for researchers and students interested in applied probability as well as practitioners of actuarial sciences. “An excellent text” Australian & New Zealand Journal of Statistics




Introductory Stochastic Analysis for Finance and Insurance


Book Description

Incorporates the many tools needed for modeling and pricing infinance and insurance Introductory Stochastic Analysis for Finance and Insuranceintroduces readers to the topics needed to master and use basicstochastic analysis techniques for mathematical finance. The authorpresents the theories of stochastic processes and stochasticcalculus and provides the necessary tools for modeling and pricingin finance and insurance. Practical in focus, the book's emphasisis on application, intuition, and computation, rather thantheory. Consequently, the text is of interest to graduate students,researchers, and practitioners interested in these areas. While thetext is self-contained, an introductory course in probabilitytheory is beneficial to prospective readers. This book evolved from the author's experience as an instructor andhas been thoroughly classroom-tested. Following an introduction,the author sets forth the fundamental information and tools neededby researchers and practitioners working in the financial andinsurance industries: * Overview of Probability Theory * Discrete-Time stochastic processes * Continuous-time stochastic processes * Stochastic calculus: basic topics The final two chapters, Stochastic Calculus: Advanced Topics andApplications in Insurance, are devoted to more advanced topics.Readers learn the Feynman-Kac formula, the Girsanov's theorem, andcomplex barrier hitting times distributions. Finally, readersdiscover how stochastic analysis and principles are applied inpractice through two insurance examples: valuation of equity-linkedannuities under a stochastic interest rate environment andcalculation of reserves for universal life insurance. Throughout the text, figures and tables are used to help simplifycomplex theory and pro-cesses. An extensive bibliography opens upadditional avenues of research to specialized topics. Ideal for upper-level undergraduate and graduate students, thistext is recommended for one-semester courses in stochastic financeand calculus. It is also recommended as a study guide forprofessionals taking Causality Actuarial Society (CAS) and Societyof Actuaries (SOA) actuarial examinations.




Stochastic Processes with Applications to Finance


Book Description

Financial engineering has been proven to be a useful tool for risk management, but using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools




Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott


Book Description

This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.




Applied Stochastic Models and Control for Finance and Insurance


Book Description

Applied Stochastic Models and Control for Finance and Insurance presents at an introductory level some essential stochastic models applied in economics, finance and insurance. Markov chains, random walks, stochastic differential equations and other stochastic processes are used throughout the book and systematically applied to economic and financial applications. In addition, a dynamic programming framework is used to deal with some basic optimization problems. The book begins by introducing problems of economics, finance and insurance which involve time, uncertainty and risk. A number of cases are treated in detail, spanning risk management, volatility, memory, the time structure of preferences, interest rates and yields, etc. The second and third chapters provide an introduction to stochastic models and their application. Stochastic differential equations and stochastic calculus are presented in an intuitive manner, and numerous applications and exercises are used to facilitate their understanding and their use in Chapter 3. A number of other processes which are increasingly used in finance and insurance are introduced in Chapter 4. In the fifth chapter, ARCH and GARCH models are presented and their application to modeling volatility is emphasized. An outline of decision-making procedures is presented in Chapter 6. Furthermore, we also introduce the essentials of stochastic dynamic programming and control, and provide first steps for the student who seeks to apply these techniques. Finally, in Chapter 7, numerical techniques and approximations to stochastic processes are examined. This book can be used in business, economics, financial engineering and decision sciences schools for second year Master's students, as well as in a number of courses widely given in departments of statistics, systems and decision sciences.




Stochastic Processes for Insurance and Finance


Book Description

Stochastic Processes for Insurance and Finance offers a thorough yet accessible reference for researchers and practitioners of insurance mathematics. Building on recent and rapid developments in applied probability, the authors describe in general terms models based on Markov processes, martingales and various types of point processes. Discussing frequently asked insurance questions, the authors present a coherent overview of the subject and specifically address: The principal concepts from insurance and finance Practical examples with real life data Numerical and algorithmic procedures essential for modern insurance practices Assuming competence in probability calculus, this book will provide a fairly rigorous treatment of insurance risk theory recommended for researchers and students interested in applied probability as well as practitioners of actuarial sciences. Wiley Series in Probability and Statistics




Monte Carlo Methods and Models in Finance and Insurance


Book Description

Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom




Stochastic Claims Reserving Methods in Insurance


Book Description

Claims reserving is central to the insurance industry. Insurance liabilities depend on a number of different risk factors which need to be predicted accurately. This prediction of risk factors and outstanding loss liabilities is the core for pricing insurance products, determining the profitability of an insurance company and for considering the financial strength (solvency) of the company. Following several high-profile company insolvencies, regulatory requirements have moved towards a risk-adjusted basis which has lead to the Solvency II developments. The key focus in the new regime is that financial companies need to analyze adverse developments in their portfolios. Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities but also to quantify possible shortfalls in these reserves that may lead to potential losses. Such an analysis requires stochastic modeling of loss liability cash flows and it can only be done within a stochastic framework. Therefore stochastic loss liability modeling and quantifying prediction uncertainties has become standard under the new legal framework for the financial industry. This book covers all the mathematical theory and practical guidance needed in order to adhere to these stochastic techniques. Starting with the basic mathematical methods, working right through to the latest developments relevant for practical applications; readers will find out how to estimate total claims reserves while at the same time predicting errors and uncertainty are quantified. Accompanying datasets demonstrate all the techniques, which are easily implemented in a spreadsheet. A practical and essential guide, this book is a must-read in the light of the new solvency requirements for the whole insurance industry.




Monte Carlo Methods in Financial Engineering


Book Description

From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis




Stochastic Processes for Insurance and Finance


Book Description

Stochastic Processes for Insurance and Finance offers a thorough yet accessible reference for researchers and practitioners of insurance mathematics. Building on recent and rapid developments in applied probability, the authors describe in general terms models based on Markov processes, martingales and various types of point processes. Discussing frequently asked insurance questions, the authors present a coherent overview of the subject and specifically address: The principal concepts from insurance and finance Practical examples with real life data Numerical and algorithmic procedures essential for modern insurance practices Assuming competence in probability calculus, this book will provide a fairly rigorous treatment of insurance risk theory recommended for researchers and students interested in applied probability as well as practitioners of actuarial sciences. Wiley Series in Probability and Statistics