Strained Silicon Heterostructures


Book Description

This book comprehensively covers the areas of materials growth, characterisation and descriptions for the new devices in siliconheterostructure material systems. In recent years, the development of powerful epitaxial growth techniques such as molecular beam epitaxy (MBE), ultra-high vacuum chemical vapour deposition (UHVCVD) and other low temperature epitaxy techniques has given rise to a new area of research of bandgap engineering in silicon-based materials. This has paved the way not only for heterojunction bipolar and field effect transistors, but also for other fascinating novel quantum devices. This book provides an excellent introduction and valuable references for postgraduate students and research scientists.




Silicon-Germanium Strained Layers and Heterostructures


Book Description

The study of Silicone Germanium strained layers has broad implications for material scientists and engineers, in particular those working on the design and modelling of semi-conductor devices. Since the publication of the original volume in 1994, there has been a steady flow of new ideas, new understanding, new Silicon-Germanium (SiGe) structures and new devices with enhanced performance. Written for both students and senior researchers, the 2nd edition of Silicon-Germanium Strained Layers and Heterostructures provides an essential up-date of this important topic, describing in particular the recent developments in technology and modelling. * Fully-revised and updated 2nd edition incorporating important recent breakthroughs and a complete literature review* The extensive bibliography of over 400 papers provides a comprehensive and coherent overview of the subject* Appropriate for students and senior researchers







Applications of Silicon-Germanium Heterostructure Devices


Book Description

The first book to deal with the design and optimization of transistors made from strained layers, Applications of Silicon-Germanium Heterostructure Devices combines three distinct topics-technology, device design and simulation, and applications-in a comprehensive way. Important aspects of the book include key technology issues for the growth of st




Heterostructures on Silicon: One Step Further with Silicon


Book Description

In the field of logic circuits in microelectronics, the leadership of silicon is now strongly established due to the achievement of its technology. Near unity yield of one million transistor chips on very large wafers (6 inches today, 8 inches tomorrow) are currently accomplished in industry. The superiority of silicon over other material can be summarized as follow: - The Si/Si0 interface is the most perfect passivating interface ever 2 obtained (less than 10" e y-I cm2 interface state density) - Silicon has a large thermal conductivity so that large crystals can be pulled. - Silicon is a hard material so that large wafers can be handled safely. - Silicon is thermally stable up to 1100°C so that numerous metallurgical operations (oxydation, diffusion, annealing ... ) can be achieved safely. - There is profusion of silicon on earth so that the base silicon wafer is cheap. Unfortunatly, there are fundamental limits that cannot be overcome in silicon due to material properties: laser action, infra-red detection, high mobility for instance. The development of new technologies of deposition and growth has opened new possibilities for silicon based structures. The well known properties of silicon can now be extended and properly used in mixed structures for areas such as opto-electronics, high-speed devices. This has been pioneered by the integration of a GaAs light emitting diode on a silicon based structure by an MIT group in 1985.




SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices


Book Description

What seems routine today was not always so. The field of Si-based heterostructures rests solidly on the shoulders of materials scientists and crystal growers, those purveyors of the semiconductor “black arts” associated with the deposition of pristine films of nanoscale dimensionality onto enormous Si wafers with near infinite precision. We can now grow near-defect free, nanoscale films of Si and SiGe strained-layer epitaxy compatible with conventional high-volume silicon integrated circuit manufacturing. SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices tells the materials side of the story and details the many advances in the Si-SiGe strained-layer epitaxy for device applications. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume defines and details the many advances in the Si/SiGe strained-layer epitaxy for device applications. Mining the talents of an international panel of experts, the book covers modern SiGe epitaxial growth techniques, epi defects and dopant diffusion in thin films, stability constraints, and electronic properties of SiGe, strained Si, and Si-C alloys. It includes appendices on topics such as the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.




Silicon Heterostructure Handbook


Book Description

An extraordinary combination of material science, manufacturing processes, and innovative thinking spurred the development of SiGe heterojunction devices that offer a wide array of functions, unprecedented levels of performance, and low manufacturing costs. While there are many books on specific aspects of Si heterostructures, the Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy is the first book to bring all aspects together in a single source. Featuring broad, comprehensive, and in-depth discussion, this handbook distills the current state of the field in areas ranging from materials to fabrication, devices, CAD, circuits, and applications. The editor includes "snapshots" of the industrial state-of-the-art for devices and circuits, presenting a novel perspective for comparing the present status with future directions in the field. With each chapter contributed by expert authors from leading industrial and research institutions worldwide, the book is unequalled not only in breadth of scope, but also in depth of coverage, timeliness of results, and authority of references. It also includes a foreword by Dr. Bernard S. Meyerson, a pioneer in SiGe technology. Containing nearly 1000 figures along with valuable appendices, the Silicon Heterostructure Handbook authoritatively surveys materials, fabrication, device physics, transistor optimization, optoelectronics components, measurement, compact modeling, circuit design, and device simulation.







SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices


Book Description

What seems routine today was not always so. The field of Si-based heterostructures rests solidly on the shoulders of materials scientists and crystal growers, those purveyors of the semiconductor “black arts” associated with the deposition of pristine films of nanoscale dimensionality onto enormous Si wafers with near infinite precision. We can now grow near-defect free, nanoscale films of Si and SiGe strained-layer epitaxy compatible with conventional high-volume silicon integrated circuit manufacturing. SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices tells the materials side of the story and details the many advances in the Si-SiGe strained-layer epitaxy for device applications. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume defines and details the many advances in the Si/SiGe strained-layer epitaxy for device applications. Mining the talents of an international panel of experts, the book covers modern SiGe epitaxial growth techniques, epi defects and dopant diffusion in thin films, stability constraints, and electronic properties of SiGe, strained Si, and Si-C alloys. It includes appendices on topics such as the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.




Strained-Si Heterostructure Field Effect Devices


Book Description

A combination of the materials science, manufacturing processes, and pioneering research and developments of SiGe and strained-Si have offered an unprecedented high level of performance enhancement at low manufacturing costs. Encompassing all of these areas, Strained-Si Heterostructure Field Effect Devices addresses the research needs associated wi