Book Description
Streamline-Simulation emphasizes the unique features of streamline technology that in many ways complement conventional finite-difference simulation. It fills gaps in the mathematical foundations.
Author : Akhil Datta-Gupta
Publisher :
Page : 418 pages
File Size : 49,75 MB
Release : 2007
Category : Business & Economics
ISBN :
Streamline-Simulation emphasizes the unique features of streamline technology that in many ways complement conventional finite-difference simulation. It fills gaps in the mathematical foundations.
Author : Zhouyuan Zhu
Publisher : Stanford University
Page : 237 pages
File Size : 48,51 MB
Release : 2011
Category :
ISBN :
Simulating thermal processes is usually computationally expensive because of the complexity of the problem and strong nonlinearities encountered. In this work, we explore novel and efficient simulation techniques to solve thermal enhanced oil recovery problems. We focus on two major topics: the extension of streamline simulation for thermal enhanced oil recovery and the efficient simulation of chemical reaction kinetics as applied to the in-situ combustion process. For thermal streamline simulation, we first study the extension to hot water flood processes, in which we have temperature induced viscosity changes and thermal volume changes. We first compute the pressure field on an Eulerian grid. We then solve for the advective parts of the mass balance and energy equations along the individual streamlines, accounting for the compressibility effects. At the end of each global time step, we account for the nonadvective terms on the Eulerian grid along with gravity using operator splitting. We test our streamline simulator and compare the results with a commercial thermal simulator. Sensitivity studies for compressibility, gravity and thermal conduction effects are presented. We further extended our thermal streamline simulation to steam flooding. Steam flooding exhibits large volume changes and compressibility associated with the phase behavior of steam, strong gravity segregation and override, and highly coupled energy and mass transport. To overcome these challenges we implement a novel pressure update along the streamlines, a Glowinski scheme operator splitting and a preliminary streamline/finite volume hybrid approach. We tested our streamline simulator on a series of test cases. We compared our thermal streamline results with those computed by a commercial thermal simulator for both accuracy and efficiency. For the cases investigated, we are able to retain solution accuracy, while reducing computational cost and gaining connectivity information from the streamlines. These aspects are useful for reservoir engineering purposes. In traditional thermal reactive reservoir simulation, mass and energy balance equations are solved numerically on discretized reservoir grid blocks. The reaction terms are calculated through Arrhenius kinetics using cell-averaged properties, such as averaged temperature and reactant concentrations. For the in-situ combustion process, the chemical reaction front is physically very narrow, typically a few inches thick. To capture accurately this front, centimeter-sized grids are required that are orders of magnitude smaller than the affordable grid block sizes for full field reservoir models. To solve this grid size effect problem, we propose a new method based on a non-Arrhenius reaction upscaling approach. We do not resolve the combustion front on the grid, but instead use a subgrid-scale model that captures the overall effects of the combustion reactions on flow and transport, i.e. the amount of heat released, the amount of oil burned and the reaction products generated. The subgrid-scale model is calibrated using fine-scale highly accurate numerical simulation and laboratory experiments. This approach significantly improves the computational speed of in-situ combustion simulation as compared to traditional methods. We propose the detailed procedures to implement this methodology in a field-scale simulator. Test cases illustrate the solution consistency when scaling up the grid sizes in multidimensional heterogeneous problems. The methodology is also applicable to other subsurface reactive flow modeling problems with fast chemical reactions and sharp fronts. Displacement front stability is a major concern in the design of all the enhanced oil recovery processes. Historically, premature combustion front break through has been an issue for field operations of in-situ combustion. In this work, we perform detailed analysis based on both analytical methods and numerical simulation. We identify the different flow regimes and several driving fronts in a typical 1D ISC process. For the ISC process in a conventional mobile heavy oil reservoir, we identify the most critical front as the front of steam plateau driving the cold oil bank. We discuss the five main contributors for this front stability/instability: viscous force, condensation, heat conduction, coke plugging and gravity. Detailed numerical tests are performed to test and rank the relative importance of all these different effects.
Author : Jia'en Lin
Publisher : Springer Nature
Page : 3487 pages
File Size : 23,4 MB
Release : 2021-06-17
Category : Technology & Engineering
ISBN : 9811607613
This book is a compilation of selected papers from the 10th International Field Exploration and Development Conference (IFEDC 2020). The proceedings focuses on Reservoir Surveillance and Management, Reservoir Evaluation and Dynamic Description, Reservoir Production Stimulation and EOR, Ultra-Tight Reservoir, Unconventional Oil and Gas Resources Technology, Oil and Gas Well Production Testing, Geomechanics. The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers senior engineers as well as professional students.
Author : Jia'en Lin
Publisher : Springer Nature
Page : 2063 pages
File Size : 50,14 MB
Release : 2019-10-02
Category : Technology & Engineering
ISBN : 981137127X
This book gathers selected papers from the 8th International Field Exploration and Development Conference (IFEDC 2018) and addresses a broad range of topics, including: Reservoir Surveillance and Management, Reservoir Evaluation and Dynamic Description, Reservoir Production Stimulation and EOR, Ultra-Tight Reservoirs, Unconventional Oil and Gas Resources Technology, Oil and Gas Well Production Testing, and Geomechanics. In brief, the papers introduce readers to upstream technologies used in oil & gas development, the main principles of the process, and various related design technologies. The conference not only provided a platform to exchange experiences, but also promoted the advancement of scientific research in oil & gas exploration and production. The book is chiefly intended for industry experts, professors, researchers, senior engineers, and enterprise managers.
Author : A.W. Martinius
Publisher : Geological Society of London
Page : 299 pages
File Size : 11,23 MB
Release : 2014-07-28
Category : Science
ISBN : 1862393729
Over the past 20 years there has been a major growth in efforts to quantify the geometry and dimensions of sediment bodies from analogues to provide quantitative input to geological models. The aim of this volume is to examine the current state of the art, from both an industry and an academic perspective. Contributions discuss the challenges of extracting relevant data from different types of sedimentary analogue (outcrop, process models, seismic) and the application and significance of such information for improving predictions from subsurface static and dynamic models. Special attention is given to modelling reservoir properties and gridding issues for predicting subsurface fluid flow. As such, the volume is expected to be of interest to both the geoscience community concerned with the fundamentals of sedimentary architecture as well as geological modellers and engineers interested in how these characteristics are modelled and influence subsurface predictions.
Author : Zhan Qu
Publisher : Springer
Page : 1921 pages
File Size : 41,84 MB
Release : 2018-07-11
Category : Technology & Engineering
ISBN : 9811075603
This book presents selected papers from the 7th International Field Exploration and Development Conference (IFEDC 2017), which focus on upstream technologies used in oil & gas development, the principles of the process, and various design technologies. The conference not only provides a platform for exchanging lessons learned, but also promotes the development of scientific research in oil & gas exploration and production. The book will benefit a broad readership, including industry experts, researchers, educators, senior engineers and managers.
Author : Clifford K. Ho
Publisher : Springer Science & Business Media
Page : 442 pages
File Size : 47,14 MB
Release : 2006-10-07
Category : Science
ISBN : 140203962X
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
Author : Yao Jun
Publisher : Gulf Professional Publishing
Page : 325 pages
File Size : 46,87 MB
Release : 2011-08-30
Category : Business & Economics
ISBN : 0123860288
The conventional and modern well test interpretation methods are an important tool in the petroleum engineer's toolkit. Used in the exploration and discovery phase of a field, they are performed to determine the quality of a well or to permit estimation of producing rates at different producing pressures. However once a field enters the middle and later development phase, the reservoir flow environment grows increasingly complex and conventional or modern methods do not satisfy the needs of old field development and evaluation. Based on over 10 years of field and research experience, Streamline Numerical Well Test Interpretation Theory and Method provides an effective method for the determination of residual oil distribution for the middle and mature phases of a field. One of the most advanced books available, the author explains the development history of well test theory, analyzes the limitation of modern well test interpretation method, and proposes the concept and framework of numerical well test. This is quickly followed by an introduction of basic principles and solution procedures of streamline numerical simulation theory and method. The book then systematically applies streamline numerical well test interpretation models to a multitude of reservoir types, ranging from single layer reservoir to multi-layer reservoirs. The book presents multi-parameter streamline numerical well test automatic match interpretation method based on double-population genetic algorithm, which lays the foundation to fast automatic match of numerical well test. The book introduces streamline numerical well test interpretation software with independent intellectual property right which is programmed based on the above theoretical studies. - Single and muti-layer sandstone water flooding reservoirs - Multi-layer sandstone chemical flooding model and components - Explains the application of streamline numerical well test and software - Applies programmed software to 177 wells - Quickly calculate the distribution of pressure, saturation and streamline - Covers all kinds of numerical well test interpretation models - Avoid the disadvantages of conventional well test and numerical well test interpretation method - Complete tutorial on streamline numerical well test interpretation software
Author : Knut-Andreas Lie
Publisher : Cambridge University Press
Page : 677 pages
File Size : 22,65 MB
Release : 2019-08-08
Category : Technology & Engineering
ISBN : 1108597696
This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a large number of numerical examples, all fully equipped with online code and data, allowing the reader to reproduce results, and use them as a starting point for their own work. All of the examples in the book are based on the MATLAB Reservoir Simulation Toolbox (MRST), an open-source toolbox popular popularity in both academic institutions and the petroleum industry. The book can also be seen as a user guide to the MRST software. It will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods. This title is also available as Open Access on Cambridge Core.
Author : S. J. Jolley
Publisher : Geological Society of London
Page : 376 pages
File Size : 37,14 MB
Release : 2010
Category : Business & Economics
ISBN : 9781862393165
"Reservoir compartmentalization - the segregation of a petroleum accumulation into a number of individual fluid/pressure compartments - controls the volume of moveable oil or gas that might be connected to any given well drilled in a field, and consequently impacts 'booking' of reserves and operational profitability. This is a general feature of modern exploration and production portfolios, and has driven major developments in geoscience, engineering and related technology. Given that compartmentalization is a consequence of many factors, an integrated subsurface approach is required to better understand and predict compartmentalization behaviour, and to minimize the risk of it occurring unexpectedly. This volume reviews our current understanding and ability to model compartmentalization. It highlights the necessity for effective specialist discipline integration, and the value of learning from operational experience in: detection and monitoring of compartmentalization; stratigraphic and mixed-mode compartmentalization; and fault-dominated compartmentalization"--Page 4 of cover.