Structronic Systems: Smart Structures, Devices And Systems (In 2 Parts)


Book Description

This book is concerned with electrostructural systems, particularly the interaction between the control of the structural and electrical (electronic) components. Structronics is a new emerging area with many potential applications in the design of high-performance structures, adaptive structures, high-precision systems, and micro-systems. As structures are increasingly being controlled by electronics, the problems of structural engineering can be separated less and less from those of electronic engineering and control engineering. This graduate-level book fills a gap in the literature by considering these problems while giving an overview of the current state of analysis, modelling and control for structronic systems. It is a coherent compendium written by leading experts in this new research area and gives readers a sophisticated toolbox that will allow them to tackle the modelling and control of smart structures. The inclusion of an extensive, up-to-date bibliography and index makes this volume an invaluable standard for professional reference.Because of the large number of contributions to the present volume, it has been subdivided into two parts, of which this is Part I. This book will be of interest to engineers, materials scientists, physicists and applied mathematicians.The synergistic integration of active (smart) materials, structures, sensors, actuators, and control electronics has redefined the concept of structures from a conventional passive elastic system to an active (life-like) structronic (structure + electronic) system with inherent self-sensing, diagnosis, and control capabilities. Because of its multi-disciplinary nature, the development of structronic systems has attracted researchers and scientists from many disciplines, such as structures, materials, control, electronics, mathematics, manufacturing, electromechanics, and mechanics. In practical applications, this new structronic system can be used as a component of high-performance machines or structural systems, or be an integrated structure itself performing designated function(s).Most common active (smart) materials, such as piezoelectrics, shape-memory alloys, electro- and magneto-strictive materials, and polyelectrolyte gels have been reviewed in Part I. Application examples are also provided and research issues reported on. While the first part focuses primarily on materials and structures, Part II emphasizes control applications and intelligent systems. With the information provided in this two-volume book, scientists and researchers can easily grasp the state of the art of smart materials and structronic systems, and are ready to pursue their own research and development endeavors.




Acoustic Interactions with Submerged Elastic Structures: Acoustic scattering and resonances


Book Description

"\berall's work in acoustic and electromagnetic scattering has evoked much interest, in the US as well as abroad, because of its possible practical applications, as well as the theoretical understanding. Many collaborators have been inspired by it, and have now contributed to this volume. The book is an excellent contribution to the literature of Acoustics and Wave Propagation. Professor Guran is to be congratulated for organizing and editing this volume." Prof. Hans A Bethe Noble Laureate Cornell University, 1996




Dynamics with Friction


Book Description

The dynamics of dissipative mechanical and structural systems is being investigated at various institutions and laboratories worldwide with ever-increasing sophistication of modeling, analysis and experiments. This book offers a collection of contributions from these research centers that represent the state-of-the-art in the study of friction oscillators. It provides the reader with the fruits of a team effort by leaders in this fascinating field.The topics covered include friction modeling, self-excited friction oscillators, homogeneous frictional systems, unsteady lubricated friction, instantaneous contact geometry, impact damping, friction-induced instability and nonlinear dynamics of stick-slip systems, among other topics.This book gives a comprehensive picture of dynamics of dissipative mechanical and structural systems. It also gives an up-to-date account of the present state of the field. It will be of interest to engineers, rheologists, material scientists, applied mathematicians, physicists and historians of science and technology.




Electromagnetic Wave Interactions


Book Description

This book is a collection of papers on electromagnetic wave mechanics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this field. The topics include polarimetric imaging, radar spectroscopy, surface or creeping waves, bistatic radar scattering, the Seebeck affect. Mathematical methods include inverse scattering theory, singularity expansion method, mixed potential integral equation, method of moments, and diffraction theory. Applications include Cellular Mobile Radios (CMR), radar target identification, and Personal Communication Services (PCS). This book shows how electromagnetic wave theory is currently being utilized and investigated. It involves a modicom of mathematical physics and will be of interest to researchers and graduate students in electrical engineering, physics and applied mathematics.




Stability Theory Of Elastic Rods


Book Description

This book treats stability problems of equilibrium states of elastic rods. Euler energy and dynamical methods of stability analysis are introduced and stability criteria for each method is developed. Stability analysis is accompanied by a number of classical conservative and non-conservative, two- and three-dimensional problems. Some problems are treated by all three methods. Many generalized versions of known problems are presented (heavy vertical rod, rotating rod, Greenhill's problem, Beck's column, Pflüger's rod, strongest column, etc.). The generalizations consist in using either a generalized form of constitutive equations or a more general form of loading, or both. Special attention is paid to the influence of shear stresses and axis compressibility on the value of the critical load. Variational methods are applied to obtain estimates of the critical load and maximal deflection in the post-critical state, in a selected number of examples.




IUTAM Symposium on Smart Structures and Structronic Systems


Book Description

Proceedings of the IUTAM Symposium on Smart Structures and Structronic Systems, held in Magdeburg, Germany, 26-29 September 2000




Piezoelectric Shells


Book Description

This book offers an introduction to piezoelectric shells and distributed sensing, energy harvesting and control applications. It familiarizes readers with a generic approach of piezoelectric shells and fundamental electromechanics of distributed piezoelectric sensors, energy harvesters and actuators applied to shell structures. The book is divided into two major parts, the first of which focuses on piezoelectric shell continua, while the second examines distributing sensing, energy harvesting and control of elastic continua, e.g., shells and plates. The exploitation of new, advanced multifunctional smart structures and structronic systems has been one of the mainstream research and development activities over the years. In the search for innovative structronics technologies, piezoelectric materials have proved to be very versatile in both sensor and actuator applications. Consequently, the piezoelectric technology has been applied to a broad range of practical applications, from small-scale nano- and micro-sensors/actuators to large-scale airplane and space structures and systems. The book provides practicing engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/energy harvester/actuator technologies in the context of structural identification, energy harvesting and precision control. The book can also be used as a textbook for graduate students. This second edition contains substantial new materials, especially energy harvesting and experimental components, and has been updated and corrected for a new generation of readers.




Adaptive Structural Systems with Piezoelectric Transducer Circuitry


Book Description

Adaptive Structural Systems with Piezoelectric Transducer Circuitry provides a comprehensive discussion on the integration of piezoelectric transducers with electrical circuitry for the development and enhancement of adaptive structural systems. Covering a wide range of interdisciplinary research, this monograph presents a paradigm of taking full advantage of the two-way electro-mechanical coupling characteristics of piezoelectric transducers for structural control and identification in adaptive structural systems. Presenting descriptions of algorithm development, theoretical analysis and experimental investigation, engineers and researchers alike will find this a valuable reference.




Electroactive Polymer (EAP) Actuators as Artificial Muscles


Book Description

Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.




Nonlinear Science And Complexity - Proceedings Of The Conference


Book Description

This volume provides useful tools in Lie group analysis to solve nonlinear partial differential equations. Many of important issues in nonlinear wave dynamics and nonlinear fluid mechanics are presented: Homotopy techniques are used to obtain analytical solutions; fundamental problems and theories in classic and quantum dynamical systems are discussed; and numerous interesting results about dynamics and vibration in sensor and smart systems are presented. Interval computation and nonlinear modeling in dynamics and control are also briefly included.