Structural and Physical Aspects of Civil Engineering


Book Description

Collection of selected, peer reviewed papers from the 2nd International Conference on Structural and Physical Aspects of Civil Engineering (SPACE-2013), November 27-29, 2013, High Tatras, Slovakia. The main aim of the book are: 1. Static and dynamic analysis of structures, 2. Seismic and stability problems of building structures, 3. Experimental analysis and diagnostics of structures, 4. Resistance, durability and reliability of structures, 5. Static - structural, shape and material optimization of structures, 6. Numerical methods, simulations and mathematical applications, 7. Failure, damages and reconstructions of structures.




Structural Design for Physical Security


Book Description

Prepared by the Task Committee on Structural Design for Physical Security of the Structural Engineering Institute of ASCE. This report provides guidance to structural engineers in the design of civil structures to resist the effects of terrorist bombings. As dramatized by the bombings of the World Trade Center in New York City and the Murrah Building in Oklahoma City, civil engineers today need guidance on designing structures to resist hostile acts. The U.S. military services and foreign embassy facilities developed requirements for their unique needs, but these the documents are restricted. Thus, no widely available document exists to provide engineers with the technical data necessary to design civil structures for enhanced physical security. The unrestricted government information included in this report is assembled collectively for the first time and rephrased for application to civilian facilities. Topics include: determination of the threat, methods by which structural loadings are derived for the determined threat, the behavior and selection of structural systems, the design of structural components, the design of security doors, the design of utility openings, and the retrofitting of existing structures. This report transfers this technology to the civil sector and provides complete methods, guidance, and references for structural engineers challenged with a physical security problem.




Mechanics of Civil Engineering Structures


Book Description

Practicing engineers designing civil engineering structures, and advanced students of civil engineering, require foundational knowledge and advanced analytical and empirical tools. Mechanics in Civil Engineering Structures presents the material needed by practicing engineers engaged in the design of civil engineering structures, and students of civil engineering. The book covers the fundamental principles of mechanics needed to understand the responses of structures to different types of load and provides the analytical and empirical tools for design. The title presents the mechanics of relevant structural elements—including columns, beams, frames, plates and shells—and the use of mechanical models for assessing design code application. Eleven chapters cover topics including stresses and strains; elastic beams and columns; inelastic and composite beams and columns; temperature and other kinematic loads; energy principles; stability and second-order effects for beams and columns; basics of vibration; indeterminate elastic-plastic structures; plates and shells. This book is an invaluable guide for civil engineers needing foundational background and advanced analytical and empirical tools for structural design. - Includes 110 fully worked-out examples of important problems and 130 practice problems with an interaction solution manual (http://hsz121.hsz.bme.hu/solutionmanual) - Presents the foundational material and advanced theory and method needed by civil engineers for structural design - Provides the methodological and analytical tools needed to design civil engineering structures - Details the mechanics of salient structural elements including columns, beams, frames, plates and shells - Details mechanical models for assessing the applicability of design codes




Building Materials in Civil Engineering


Book Description

The construction of buildings and structures relies on having a thorough understanding of building materials. Without this knowledge it would not be possible to build safe, efficient and long-lasting buildings, structures and dwellings. Building materials in civil engineering provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries.The book begins with an introductory chapter describing the basic properties of building materials. Further chapters cover the basic properties of building materials, air hardening cement materials, cement, concrete, building mortar, wall and roof materials, construction steel, wood, waterproof materials, building plastics, heat-insulating materials and sound-absorbing materials and finishing materials. Each chapter includes a series of questions, allowing readers to test the knowledge they have gained. A detailed appendix gives information on the testing of building materials.With its distinguished editor and eminent editorial committee, Building materials in civil engineering is a standard introductory reference book on the complete range of building materials. It is aimed at students of civil engineering, construction engineering and allied courses including water supply and drainage engineering. It also serves as a source of essential background information for engineers and professionals in the civil engineering and construction sector. - Provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries - Explores the basic properties of building materials featuring air hardening cement materials, wall and roof materials and sound-absorbing materials - Each chapter includes a series of questions, allowing readers to test the knowledge they have gained




Civil Engineering and the Science of Structures


Book Description

Civil engineers are involved in the design and construction of various structures, including high-rise buildings, sports stadiums, canals, dams, and bridges. This book gives readers a close-up look at the technology used to build various structures around the world.




New Materials in Civil Engineering


Book Description

New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a "one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies




Structural Health Monitoring of Large Civil Engineering Structures


Book Description

A critical review of key developments and latest advances in Structural Health Monitoring technologies applied to civil engineering structures, covering all aspects required for practical application Structural Health Monitoring (SHM) provides the facilities for in-service monitoring of structural performance and damage assessment, and is a key element of condition based maintenance and damage prognosis. This comprehensive book brings readers up to date on the most important changes and advancements in the structural health monitoring technologies applied to civil engineering structures. It covers all aspects required for such monitoring in the field, including sensors and networks, data acquisition and processing, damage detection techniques and damage prognostics techniques. The book also includes a number of case studies showing how the techniques can be applied in the development of sustainable and resilient civil infrastructure systems. Structural Health Monitoring of Large Civil Engineering Structures offers in-depth chapter coverage of: Sensors and Sensing Technology for Structural Monitoring; Data Acquisition, Transmission, and Management; Structural Damage Identification Techniques; Modal Analysis of Civil Engineering Structures; Finite Element Model Updating; Vibration Based Damage Identification Methods; Model Based Damage Assessment Methods; Monitoring Based Reliability Analysis and Damage Prognosis; and Applications of SHM Strategies to Large Civil Structures. Presents state-of-the-art SHM technologies allowing asset managers to evaluate structural performance and make rational decisions Covers all aspects required for the practical application of SHM Includes case studies that show how the techniques can be applied in practice Structural Health Monitoring of Large Civil Engineering Structures is an ideal book for practicing civil engineers, academics and postgraduate students studying civil and structural engineering.




Physical Models


Book Description

Physical models have been, and continue to be used by engineers when faced with unprecedented challenges, when engineering science has been non-existent or inadequate, and in any other situation when the engineer has needed to raise their confidence in a design proposal to a sufficient level to begin construction. For this reason, models have mostly been used by designers and constructors of highly innovative projects, when previous experience has not been available. The book covers the history of using of physical models in the design and development of civil and building engineering projects including bridges in the mid-18th century, William Fairbairn?s Britannia bridge in the 1840s, the masonry Aswan Dam in the 1890s, concrete dams in the 1920s, thin concrete shell roofs and the dynamic behaviour of tall buildings in earthquakes from the 1930s, tidal flow in estuaries and the acoustics of concert halls from the 1950s, and cable-net and membrane structures in the 1960s. Traditionally, progress in engineering has been attributed to the creation and use of engineering science, the understanding materials properties and the development of new construction methods. The book argues that the use of reduced scale models have played an equally important part in the development of civil and building engineering. However, like the history of engineering design itself, this crucial contribution has not been widely reported or celebrated. The book concludes with reviews of the current use of physical models alongside computer models, for example, in boundary layer wind tunnels, room acoustics, seismic engineering, hydrology, and air flow in buildings.




Understanding Structural Engineering


Book Description

In our world of seemingly unlimited computing, numerous analytical approaches to the estimation of stress, strain, and displacement-including analytical, numerical, physical, and analog techniques-have greatly advanced the practice of engineering. Combining theory and experimentation, computer simulation has emerged as a third path for engineering




Civil & Structural Engineering


Book Description

Everything civil and structural engineers in California need to prepare for the seismic design topics of the Special Civil Engineering Exam and California Structural Engineering Exam. This guide emphasizes methods that lead to the quickest and simplest solution to any problem.