Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures


Book Description

This book deals with structural failure (induced by mechanical, aerodynamic, acoustic and aero-thermal, loads, etc.) of modern aerospace vehicles, in particular high-speed aircraft, solid propellant rocket systems and hypersonic flight vehicles, where structural integrity, failure prediction and service life assessment are particularly challenging, due to the increasingly more demanding mission requirements and the use of non-traditional materials, such as non-metallic composites, in their construction. Prediction of the complex loading environment seen in high-speed operation and constitutive / fracture models which can adequately describe the non-linear behaviour exhibited by advanced alloys and composite materials are critical in analyzing the non-linear structural response of modern aerospace vehicles and structures. The state-of-the-art of the different structural integrity assessment and prediction methodologies (including non-destructive structural health monitoring techniques) used for the structural design, service life assessment and failure analysis of the different types of aerospace vehicles are presented. The chapters are written by experts from aerospace / defence research organizations and academia in the fields of solid mechanics, and structural mechanics and dynamics of aircraft, rocket and hypersonic systems. The book will serve as a useful reference document containing specialist knowledge on appropriate prediction methodologies for a given circumstance and experimental data acquired from multi-national collaborative programs.




Aerospace Structures


Book Description







An Assessment of the State-of-the-art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles


Book Description

The results of an assessment of the state-of-the-art in the design and manufacturing of large composite structures are described. The focus of the assessment is on the use of polymeric matrix composite materials for large airframe structural components, such as those in commercial and military aircraft and space transportation vehicles. Applications of composite materials for large commercial transport aircraft, general aviation aircraft, rotorcraft, military aircraft, and unmanned rocket launch vehicles are reviewed. The results of the assessment of the state-of-the-art include a summary of lessons learned, examples of current practice, and an assessment of advanced technologies under development.










Computational Methods in Nonlinear Structural and Solid Mechanics


Book Description

Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.




Aerospace Materials and Material Technologies


Book Description

This book serves as a comprehensive resource on various traditional, advanced and futuristic material technologies for aerospace applications encompassing nearly 20 major areas. Each of the chapters addresses scientific principles behind processing and production, production details, equipment and facilities for industrial production, and finally aerospace application areas of these material technologies. The chapters are authored by pioneers of industrial aerospace material technologies. This book has a well-planned layout in 4 parts. The first part deals with primary metal and material processing, including nano manufacturing. The second part deals with materials characterization and testing methodologies and technologies. The third part addresses structural design. Finally, several advanced material technologies are covered in the fourth part. Some key advanced topics such as “Structural Design by ASIP”, “Damage Mechanics-Based Life Prediction and Extension” and “Principles of Structural Health Monitoring” are dealt with at equal length as the traditional aerospace materials technology topics. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.




Aeronautical Engineering


Book Description

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA)




Aircraft Sustainment and Repair


Book Description

Aircraft Sustainment and Repair is a one-stop-shop for practitioners and researchers in the field of aircraft sustainment, adhesively bonded aircraft joints, bonded composites repairs, and the application of cold spray to military and civil aircraft. Outlining the state-of-the-art in aircraft sustainment, this book covers the use of quantitative fractography to determine the in-service crack length versus flight hours curve, the effect of intergranular cracking on structural integrity and the structural significance of corrosion. The book additionally illustrates the potential of composite repairs and SPD applications to metallic airframes. - Covers corrosion damage assessment and management in aircraft structures - Includes a key chapter on U.S. developments in the emerging field of supersonic particle deposition (SPD) - Shows how to design and assess the potential benefits of both bonded composite repairs and SPD repairs to metallic aircraft structures to meet the damage tolerance requirements inherent in FAA ac 20-107b and the U.S. Joint Services