Structural Health Monitoring 2013: A Roadmap to Intelligent Structures


Book Description

Original research on SHM sensors, quantification strategies, system integration and control for a wide range of engineered materials New applications in robotics, machinery, as well as military aircraft, railroads, highways, bridges, pipelines, stadiums, tunnels, space exploration and energy production Continuing a critical book series on structural health monitoring (SHM), this two-volume set (with full-text searchable CD-ROM) offers, as its subtitle implies, a guide to greater integration and control of SHM systems. Specifically, the volumes contain new research that will enable readers to more efficiently link sensor detection, diagnostics/quantification, overall system functionality, and automated, e.g., robotic, control, thus further closing the loop from inherent signal-based damage detection to responsive real-time maintenance and repair. SHM performance is demonstrated in monitoring the behavior of composites, metals, concrete, polymers and selected nanomaterials in a wide array of surroundings, including harsh environments, under extreme (e.g., seismic) loading and in space. New information on smart sensors and network optimization is enhanced by novel statistical and model-based methods for signal processing and data quantification. A special feature of the book is its explanation of emerging control technologies. Research in these volumes was initially presented in September 2013 at the 9th International Workshop on Structural Health Monitoring (IWSHM), held at Stanford University and sponsored by the Air Force Office of Scientific Research, the Army Research Laboratory, and the Office of Naval Research.




Structural Health Monitoring


Book Description

Written by global leaders and pioneers in the field, this book is a must-have read for researchers, practicing engineers and university faculty working in SHM. Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions. Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors’ detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies. Considers structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm Emphasises an integrated approach to the development of structural health monitoring solutions by coupling the measurement hardware portion of the problem directly with the data interrogation algorithms Benefits from extensive use of the authors’ detailed surveys of 800 papers in the technical literature and the experience they have gained from teaching numerous short courses on this subject.




Structural Health Monitoring


Book Description

This book is organized around the various sensing techniques used to achieve structural health monitoring. Its main focus is on sensors, signal and data reduction methods and inverse techniques, which enable the identification of the physical parameters, affected by the presence of the damage, on which a diagnostic is established. Structural Health Monitoring is not oriented by the type of applications or linked to special classes of problems, but rather presents broader families of techniques: vibration and modal analysis; optical fibre sensing; acousto-ultrasonics, using piezoelectric transducers; and electric and electromagnetic techniques. Each chapter has been written by specialists in the subject area who possess a broad range of practical experience. The book will be accessible to students and those new to the field, but the exhaustive overview of present research and development, as well as the numerous references provided, also make it required reading for experienced researchers and engineers.




Structural Health Monitoring of Large Civil Engineering Structures


Book Description

A critical review of key developments and latest advances in Structural Health Monitoring technologies applied to civil engineering structures, covering all aspects required for practical application Structural Health Monitoring (SHM) provides the facilities for in-service monitoring of structural performance and damage assessment, and is a key element of condition based maintenance and damage prognosis. This comprehensive book brings readers up to date on the most important changes and advancements in the structural health monitoring technologies applied to civil engineering structures. It covers all aspects required for such monitoring in the field, including sensors and networks, data acquisition and processing, damage detection techniques and damage prognostics techniques. The book also includes a number of case studies showing how the techniques can be applied in the development of sustainable and resilient civil infrastructure systems. Structural Health Monitoring of Large Civil Engineering Structures offers in-depth chapter coverage of: Sensors and Sensing Technology for Structural Monitoring; Data Acquisition, Transmission, and Management; Structural Damage Identification Techniques; Modal Analysis of Civil Engineering Structures; Finite Element Model Updating; Vibration Based Damage Identification Methods; Model Based Damage Assessment Methods; Monitoring Based Reliability Analysis and Damage Prognosis; and Applications of SHM Strategies to Large Civil Structures. Presents state-of-the-art SHM technologies allowing asset managers to evaluate structural performance and make rational decisions Covers all aspects required for the practical application of SHM Includes case studies that show how the techniques can be applied in practice Structural Health Monitoring of Large Civil Engineering Structures is an ideal book for practicing civil engineers, academics and postgraduate students studying civil and structural engineering.




New Trends in Vibration Based Structural Health Monitoring


Book Description

This book is a collection of articles covering the six lecture courses given at the CISM School on this topic in 2008. It features contributions by established international experts and offers a coherent and comprehensive overview of the state-of-the art research in the field, thus addressing both postgraduate students and researchers in aerospace, mechanical and civil engineering.




Structural Health Monitoring Based on Data Science Techniques


Book Description

The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.







Structural Health Monitoring 2003


Book Description

Important new information on sensors, monitoring, prognosis, networking, and planning for safety and maintenance.




Fibre Optic Methods for Structural Health Monitoring


Book Description

The use of fibre optic sensors in structural health monitoring has rapidly accelerated in recent years. By embedding fibre optic sensors in structures (e.g. buildings, bridges and pipelines) it is possible to obtain real time data on structural changes such as stress or strain. Engineers use monitoring data to detect deviations from a structure’s original design performance in order to optimise the operation, repair and maintenance of a structure over time. Fibre Optic Methods for Structural Health Monitoring is organised as a step-by-step guide to implementing a monitoring system and includes examples of common structures and their most-frequently monitored parameters. This book: presents a universal method for static structural health monitoring, using a technique with proven effectiveness in hundreds of applications worldwide; discusses a variety of different structures including buildings, bridges, dams, tunnels and pipelines; features case studies which describe common problems and offer solutions to those problems; provides advice on establishing mechanical parameters to monitor (including deformations, rotations and displacements) and on placing sensors to achieve monitoring objectives; identifies methods for interpreting data according to construction material and shows how to apply numerical concepts and formulae to data in order to inform decision making. Fibre Optic Methods for Structural Health Monitoring is an invaluable reference for practising engineers in the fields of civil, structural and geotechnical engineering. It will also be of interest to academics and undergraduate/graduate students studying civil and structural engineering.




New Trends in Structural Health Monitoring


Book Description

A motivation for structural health monitoring. Structural health monitoring of aircraft structures. Vibration-based damage diagnosis and monitoring of external loads.Statistical time series methods for vibration based structural health monitoring. Fiber optic sensors. Damage localisation using elastic waves propagation methods experimental techniques. Application for wind turbine blades. Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.