Structural Life Assessment Methods


Book Description




Handbook of Structural Life Assessment


Book Description

This important, self-contained reference deals with structural life assessment (SLA) and structural health monitoring (SHM) in a combined form. SLA periodically evaluates the state and condition of a structural system and provides recommendations for possible maintenance actions or the end of structural service life. It is a diversified field and relies on the theories of fracture mechanics, fatigue damage process, and reliability theory. For common structures, their life assessment is not only governed by the theory of fracture mechanics and fatigue damage process, but by other factors such as corrosion, grounding, and sudden collision. On the other hand, SHM deals with the detection, prediction, and location of crack development online. Both SLA and SHM are combined in a unified and coherent treatment.




New Materials for Next-Generation Commercial Transports


Book Description

The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft.




Towards a Unified Fatigue Life Prediction Method for Marine Structures


Book Description

In order to apply the damage tolerance design philosophy to design marine structures, accurate prediction of fatigue crack growth under service conditions is required. Now, more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to explain various fatigue phenomena observed. In this book, the issues leading towards the development of a unified fatigue life prediction (UFLP) method based on FCP theory are addressed. Based on the philosophy of the UFLP method, the current inconsistency between fatigue design and inspection of marine structures could be resolved. This book presents the state-of-the-art and recent advances, including those by the authors, in fatigue studies. It is designed to lead the future directions and to provide a useful tool in many practical applications. It is intended to address to engineers, naval architects, research staff, professionals and graduates engaged in fatigue prevention design and survey of marine structures, in fatigue studies of materials and structures, in experimental laboratory research, in planning the repair and maintenance of existing structures, and in rule development. The book is also an effective educational aid in naval architecture, marine, civil and mechanical engineering. Prof. Weicheng Cui is the Dean of Hadal Science and Technology Research Center of Shanghai Ocean University, China. Dr. Xiaoping Huang is an associate professor of School of Naval Architecture, Ocean and Civil Engineering of Shanghai Jiao Tong University, China. Dr. Fang Wang is an associate professor of Hadal Science and Technology Research Center of Shanghai Ocean University, China.




Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures


Book Description

This book deals with structural failure (induced by mechanical, aerodynamic, acoustic and aero-thermal, loads, etc.) of modern aerospace vehicles, in particular high-speed aircraft, solid propellant rocket systems and hypersonic flight vehicles, where structural integrity, failure prediction and service life assessment are particularly challenging, due to the increasingly more demanding mission requirements and the use of non-traditional materials, such as non-metallic composites, in their construction. Prediction of the complex loading environment seen in high-speed operation and constitutive / fracture models which can adequately describe the non-linear behaviour exhibited by advanced alloys and composite materials are critical in analyzing the non-linear structural response of modern aerospace vehicles and structures. The state-of-the-art of the different structural integrity assessment and prediction methodologies (including non-destructive structural health monitoring techniques) used for the structural design, service life assessment and failure analysis of the different types of aerospace vehicles are presented. The chapters are written by experts from aerospace / defence research organizations and academia in the fields of solid mechanics, and structural mechanics and dynamics of aircraft, rocket and hypersonic systems. The book will serve as a useful reference document containing specialist knowledge on appropriate prediction methodologies for a given circumstance and experimental data acquired from multi-national collaborative programs.







Probabilistic Structural Mechanics Handbook


Book Description

The need for a comprehensive book on probabilistic structural mechanics that brings together the many analytical and computational methods developed over the years and their applications in a wide spectrum of industries-from residential buildings to nuclear power plants, from bridges to pressure vessels, from steel structures to ceramic structures-became evident from the many discussions the editor had with practising engineers, researchers and professors. Because no single individual has the expertise to write a book with such a di.verse scope, a group of 39 authors from universities, research laboratories, and industries from six countries in three continents was invited to write 30 chapters covering the various aspects of probabilistic structural mechanics. The editor and the authors believe that this handbook will serve as a reference text to practicing engineers, teachers, students and researchers. It may also be used as a textbook for graduate-level courses in probabilistic structural mechanics. The editor wishes to thank the chapter authors for their contributions. This handbook would not have been a reality without their collaboration.




Experimental and Computational Investigations in Engineering


Book Description

This proceedings book is a collection of high-quality peer-reviewed research papers presented at the International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech2020) held at Zlatibor, Serbia, from 29th June to 2nd July 2020. The book discusses a wide variety of industrial, engineering and scientific applications of the engineering techniques. Researchers from academia and industry present their original work and exchange ideas, experiences, information, techniques, applications and innovations in the field of mechanical engineering, materials science, chemical and process engineering, experimental techniques, numerical methods and new technologies.




Life-Cycle of Structures and Infrastructure Systems


Book Description

Life-Cycle of Structures and Infrastructure Systems contains the lectures and papers presented at IALCCE 2023- The Eighth International Symposium on Life-Cycle Civil Engineering, held at Politecnico di Milano, Milan, Italy, 2-6 July, 2023. This book contains the full papers of 514 contributions presented at IALCCE 2023, including the Fazlur R. Khan Plenary Lecture, nine Keynote Lectures, and 504 technical papers from 45 countries. The papers cover recent advances and cutting-edge research in the field of life-cycle civil engineering, including emerging concepts and innovative applications related to life-cycle design, assessment, inspection, monitoring, repair, maintenance, rehabilitation, and management of structures and infrastructure systems under uncertainty. Major topics covered include life-cycle safety, reliability, risk, resilience and sustainability, life-cycle damaging processes, life-cycle design and assessment, life-cycle inspection and monitoring, life-cycle maintenance and management, life-cycle performance of special structures, life-cycle cost of structures and infrastructure systems, and life-cycle-oriented computational tools, among others. This Open Access Book provides both an up-to-date overview of the field of life-cycle civil engineering and significant contributions to the process of making more rational decisions to mitigate the life-cycle risk and improve the life-cycle reliability, resilience, and sustainability of structures and infrastructure systems exposed to multiple natural and human-made hazards in a changing climate. It will serve as a valuable reference to all concerned with life-cycle of civil engineering systems, including students, researchers, practicioners, consultants, contractors, decision makers, and representatives of managing bodies and public authorities from all branches of civil engineering.




Structural and Residual Stress Analysis by Nondestructive Methods


Book Description

The field of stress analysis has gained its momentum from the widespread applications in industry and technology and has now become an important part of materials science. Various destructive as well as nondestructive methods have been developed for the determination of stresses. This timely book provides a comprehensive review of the nondestructive techniques for strain evaluation written by experts in their respective fields.The main part of the book deals with X-ray stress analysis (XSA), focussing on measurement and evaluation methods which can help to solve the problems of today, the numerous applications of metallic, polymeric and ceramic materials as well as of thin-film-substrate composites and of advanced microcomponents. Furthermore it contains data, results, hints and recommendations that are valuable to laboratories for the certification and accreditation of their stress analysis.Stress analysis is an active field in which many questions remain unsettled. Accordingly, unsolved problems and conflicting results are discussed as well. The assessment of the experimentally determined residual and structural stress states on the static and dynamic behavior of materials and components is handled in a separate chapter.Students and engineers of materials science and scientists working in laboratories and industries will find this book invaluable.