Fundamentals of Structural Dynamics


Book Description

FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.




Dynamics of Structures


Book Description

This second edition includes many topics encompassing the theory of structural dynamics and the application of this theory regarding earthquake analysis, response, and design of structures. Covers the inelastic design spectrum to structural design; energy dissipation devices; Eurocode; theory of dynamic response of structures; structural dynamics theory; and more. Ideal for readers interested in Dynamics of Structures and Earthquake Engineering.




Formulas for Structural Dynamics: Tables, Graphs and Solutions


Book Description

* This information-rich reference book provides solutions to the architectural problem of vibrations in beams, arches and frames in bridges, highways, buildings and tunnels * A must-have for structural designers and civil engineers, especially those involved in the seismic design of buildings * Well-organized into problem-specific chapters, and loaded with detailed charts, graphs, and necessary formulas




Dynamics of Structures


Book Description

This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to students of the subject. Key features: Examines the effects of loads, impacts, and seismic forces on the materials used in the construction of buildings, bridges, tunnels, and more Structural dynamics is a critical aspect of the design of all engineered/designed structures and objects - allowing for accurate prediction of their ability to withstand service loading, and for knowledge of failure-causeing or critical loads




Stress, Strain, and Structural Dynamics


Book Description

Stress, Strain, and Structural Dynamics is a comprehensive and definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. This text integrates the development of fundamental theories, formulas and mathematical models with user-friendly interactive computer programs, written in the powerful and popular MATLAB. This unique merger of technical referencing and interactive computing allows instant solution of a variety of engineering problems, and in-depth exploration of the physics of deformation, stress and motion by analysis, simulation, graphics, and animation. This book is ideal for both professionals and students dealing with aerospace, mechanical, and civil engineering, as well as naval architecture, biomechanics, robotics, and mechtronics. For engineers and specialists, the book is a valuable resource and handy design tool in research and development. For engineering students at both undergraduate and graduate levels, the book serves as a useful study guide and powerful learning aid in many courses. And for instructors, the book offers an easy and efficient approach to curriculum development and teaching innovation. - Combines knowledge of solid mechanics--including both statics and dynamics, with relevant mathematical physics and offers a viable solution scheme. - Will help the reader better integrate and understand the physical principles of classical mechanics, the applied mathematics of solid mechanics, and computer methods. - The Matlab programs will allow professional engineers to develop a wider range of complex engineering analytical problems, using closed-solution methods to test against numerical and other open-ended methods. - Allows for solution of higher order problems at earlier engineering level than traditional textbook approaches.




Structure and Dynamics


Book Description

This book describes how the arrangement and movement of atoms in a solid are related to the forces between atoms, and how they affect the behaviour and properties of materials. The book is intended for final year undergraduate students and graduate students in physics and materials science.




Structural Dynamics


Book Description

The use of COSMOS for the analysis and solution of structural dynamics problems is introduced in this new edition. The COSMOS program was selected from among the various professional programs available because it has the capability of solving complex problems in structures, as well as in other engin eering fields such as Heat Transfer, Fluid Flow, and Electromagnetic Phenom ena. COSMOS includes routines for Structural Analysis, Static, or Dynamics with linear or nonlinear behavior (material nonlinearity or large displacements), and can be used most efficiently in the microcomputer. The larger version of COSMOS has the capacity for the analysis of structures modeled up to 64,000 nodes. This fourth edition uses an introductory version that has a capability limited to 50 nodes or 50 elements. This version is included in the supplement, STRUCTURAL DYNAMICS USING COSMOS 1. The sets of educational programs in Structural Dynamics and Earthquake Engineering that accompanied the third edition have now been extended and updated. These sets include programs to determine the response in the time or frequency domain using the FFf (Fast Fourier Transform) of structures modeled as a single oscillator. Also included is a program to determine the response of an inelastic system with elastoplastic behavior and a program for the development of seismic response spectral charts. A set of seven computer programs is included for modeling structures as two-dimensional and three dimensional frames and trusses.




Structural Dynamics


Book Description

Written by two experts across multiple disciplines, this is the perfect reference on structural dynamics for veteran engineers and introduction to the field for engineering students. Across many disciplines of engineering, dynamic problems of structures are a primary concern. Civil engineers, mechanical engineers, aircraft engineers, ocean engineers, and engineering students encounter these problems every day, and it is up to them systematically to grasp the basic concepts, calculation principles and calculation methods of structural dynamics. This book focuses on the basic theories and concepts, as well as the application and background of theories and concepts in engineering. Since the basic principles and methods of dynamics are applied to other various engineering fields, this book can also be used as a reference for practicing engineers in the field across many multiple disciplines and for undergraduate and graduate students in other majors as well. The main contents include basic theory of dynamics, establishment of equation of motion, single degree of freedom systems, multi-degree of freedom systems, distributed-parameter systems, stochastic structural vibrations, research projects of structural dynamics, and structural dynamics of marine pipeline and risers. Whether for the veteran engineer or student, this is a must-have for any scientific or engineering library. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.




Structures and Dynamics of Asphaltenes


Book Description

The investigative assault upon the enigmatic asphaltenes has recently resulted in sig nificant advances in many varied disciplines. Taken individually, each discipline exposes certain facets of asphaltenes, but each, alone, can never reveal asphaltenes from all van tages. Even seemingly narrowly focused issues such as the molecular structures of asphal tenes, or the colloidal structures of asphaltenes require a confluence of many lines of investigation to yield an understanding which differs from truth by diminishing uncer tainty. An holistic treatment of the asphaltenes is a powerful approach to evolve further their understanding. For example, examination of asphaltenes at the highest resolution yields molecular structure. A slight increase in scale probes asphaltene colloidal structure. Weaving together asphaltene studies performed at different length scales results in a fabric which envelops an encompassing vision of asphaltenes. At the same time, the interfaces of these hierarchical studies provide additional constraints on imagination, more than investi gations at individual length scales alone. These considerations shaped the timing, format, and the content of our book. The editors are very appreciative of the diligence and hard work manifest in each of the contributed chapters herein. We thank the contributing authors for making this project a success. Oliver C. Mullins Eric Y. Sheu vii CONTENTS I. Asphaltenes: Types and Sources ...................................... .




Dynamics of Offshore Structures


Book Description

Unique, cutting-edge material on structural dynamics and natural forces for offshore structures Using the latest advances in theory and practice, Dynamics of Offshore Structures, Second Edition is extensively revised to cover all aspects of the physical forces, structural modeling, and mathematical methods necessary to effectively analyze the dynamic behavior of offshore structures. Both closed-form solutions and the Mathematica(r) software package are used in many of the up-to-date example problems to compute the deterministic and stochastic structural responses for such offshore structures as buoys; moored ships; and fixed-bottom, cable-stayed, and gravity-type platforms. Throughout the book, consideration is given to the many assumptions involved in formulating a structural model and to the natural forces encountered in the offshore environment. These analyses focus on plane motions of elastic structures with linear and nonlinear restraints, as well as motions induced by the forces of currents, winds, earthquakes, and waves, including the latest theories and information on wave mechanics. Topics addressed include multidegree of freedom linear structures, continuous system analysis (including the motion of cables and pipelines), submerged pile design, structural modal damping, fluid-structure-soil interactions, and single degree of freedom structural models that, together with plane wave loading theories, lead to deterministic or time history predictions of structural responses. These analyses are extended to statistical descriptions of both wave loading and structural motion. Dynamics of Offshore Structures, Second Edition is a valuable text for students in civil and mechanical engineering programs and an indispensable resource for structural, geotechnical, and construction engineers working with offshore projects.