Structure-Based Mechanics of Tissues and Organs


Book Description

This book portrays the commonality of tissue micro-structure that dictates physiological function in various organs (microstructure-function relation). Tissue and organ models are used to illustrate physiological functions based on microstructure. Fiber scale properties such as orientation and crimp are described in detail. Structurally-based constitutive models are given throughout the book, not only to avoid ambiguities in material characterization, but also to offer insights into the function, structure, and mechanics of tissue components. A statement of future directions of the field is also given, including how advancements, such as state-of-the-art computational modeling and optical measurements of tissue/cells structures, are taking structure-based modeling to the next level. This book also: Provides a comprehensive view of tissue modeling across multiple systems Broadens readers’ understanding of state-of-the-art computational modeling and optical measurements of tissue/cells structures Describes in detail fiber scale properties such as orientation and crimp




Cardiovascular Soft Tissue Mechanics


Book Description

Cowin (New York Center for Biomedical Engineering) and Humphrey (biomedical engineering, Texas A&M U.) present seven papers that discuss current research and future directions. Topics concern tissues within the cardiovascular system (arteries, the heart, and biaxial testing of planar tissues such as heart valves). Themes include an emphasis on data on the underlying microstructure, especially collagen; the consideration of the fact that both arteries and the heart contain muscle and that there is, therefore, a need to quantify both the active and passive response; constitutive relations for active behavior; and the growth and remodeling of cardiovascular tissues. Of interest to cardiovascular and biomechanics soft tissue researchers, and bioengineers. Annotation copyrighted by Book News, Inc., Portland, OR.




Tissue Mechanics


Book Description

The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.




Cardiovascular Solid Mechanics


Book Description

This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.




Data Book on Mechanical Properties of Living Cells, Tissues, and Organs


Book Description

A research project entitled Biomechanics of Structure and Function of Living Cells, Tissues, and Organs was launched in Japan in 1992. This data book presents the original, up-to-date information resulting from the research project, supplemented by some of the important basic data published previously. The aim of collecting the information is to offer accurate and useful data on the mechanical properties of living materials to biomechanical scientists, biomedical engineers, medical scientists, and clinicians. The data are presented in graphs and tables (one type of data per page) arranged in an easily accessible manner, along with details of the origin of the material and the experimental method. Together with its two companion volumes, Biomechanics: Functional Adaptation and Remodeling and Computational Biomechanics, the Data Book on Mechanical Properties of Living Cells, Tissues, and Organs is a timely and valuable contribution to the rapidly growing field of biomechanics.




Collagen


Book Description

Not only does this book provide a comprehensive review of current research advances in collagen structure and mechanics, it also explores this biological macromolecule’s many applications in biomaterials and tissue engineering. Readers gain an understanding of the structure and mechanical behavior of type I collagen and collagen-based tissues in vertebrates across all length scales, from the molecular (nano) to the organ (macro) level.




Mechanics of Biological Tissue


Book Description

The mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research. This book points to important directions combining mechanical sciences with the new developments in biology. It delivers articles on mechanics of tissues at the molecular, cellular, tissue and organ levels.




Biomechanics of Living Organs


Book Description

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions




Modelling Organs, Tissues, Cells and Devices


Book Description

This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.




Tissue Engineering


Book Description

Tissue or organ transplantation are among the few options available for patients with excessive skin loss, heart or liver failure, and many common ailments, and the demand for replacement tissue greatly exceeds the supply, even before one considers the serious constraints of immunological tissue type matching to avoid immune rejection. Tissue engineering promises to help sidestep constraints on availability and overcome the scientific challenges, with huge medical benefits. This book lays out the principles of tissue engineering. It will be a useful reference work for those associated with this field and as a textbook for specialized courses in the subject. It is a companion volume to Saltzman's OUP book on drug delivery.