Sulphone Molecular Structures


Book Description

Recently, the molecular structures of a relatively large number of sulphone compounds have been elucidated in the vapour phase by electron diffraction and microwave spectroscopy. The main purpose of these studies is the determination of the sulphur bond configuration and the conformational properties. This leads to the observation and correlation of characteristic structural variations as various ligands are attached to the S02 group and as comparisons are made with related molecules. Today it may be said that the structure of sulphone molecules is relatively well studied, and it appeared necessary to systematize the accumulated experimental data after critical considerations. This is done in the first part of this monograph. The second part presents the observed characteristic structural variations. Attempts are made to interpret these variations by valence shell electron pair repulsions and-non-bonded interactions. Correlation relationships between geometric and vibrational parameters are also presented. It is the metrical aspects of the molecular structure which are primarily considered. Since they correlate with other aspects of the molecular structure, e.g. electronic, it is hoped that the experimental information on the molecular geometry provides stim ulus for further experimental, and, in particular, theoretical work on sulphones and related systems. IV It is attempted to cover all electron diffraction and micro wave spectroscopic investigations on sulphone molecules to date. Admittedly, however, relatively larger weight is given to the electron diffraction studies originating from the author's own laboratory.




Molecular Structure by Diffraction Methods


Book Description

Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.




Molecular Structure by Diffraction Methods


Book Description

Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.




Bonding in Electron-Rich Molecules


Book Description

This second edition was updated to include some of the recent developments, such as “increased-valence” structures for 3-electron-3-centre bonding, benzene, electron conduction and reaction mechanisms, spiral chain O4 polymers and recoupled-pair bonding. The author provides qualitative molecular orbital and valence-bond descriptions of the electronic structures for primarily electron-rich molecules, with strong emphasis given to the valence-bond approach that uses “increased-valence” structures. He describes how “long-bond” Lewis structures as well as standard Lewis structures are incorporated into “increased-valence” structures for electron-rich molecules. “Increased-valence” structures involve more electrons in bonding than do their component Lewis structures, and are used to provide interpretations for molecular electronic structure, bond properties and reactivities. Attention is also given to Pauling “3-electron bonds”, which are usually diatomic components of “increased-valence” structures for electron-rich molecules.




Unified Valence Bond Theory of Electronic Structure


Book Description

The bond diagrammatic representation of molecules is the foundation of MOVB theory. To a certain extent, this kind of representation is analogous to the one on which "resonance theory" is based and this fact can be projected by a comparison of the various ways in which MOVB theory depicts a species made up of three core and two ligand MO's which define two subsystems containing a total of six electrons and the ways in which "resonance theory" (i. e. , qualitative VB theory) depicts a six-electron-six-AO species such as the pi system of CH =CH-CH=CH-CH=O. The 2 different pictorial representations are shown in Scheme 1 so that the analogies are made evident. First of all, the total MOVB diagrammatic representation of the 6/5 species is obtained by a linear combination of three complete bond diagrams, as in Al, which describe the optimal linear combination of!l! MOVB Configuration Wavefunctions (CW's). By the same token, a total VB diagrammatic representation of the 6/6 species can be obtained by writing a "dot structure", as in Bl, and taking this to mean the optimal linear combination of all VB CW's. Next, we can approxi mate the MOVB wavefunction of the 6/5 species by one complete (or detailed) bond dia gram" (A2). No simple VB representation analogy can be given in this case. Alterna tively, we can approximate the MOVB wavefunction by a linear combination of compact bond diagrams, as in A3, in the way described before.







Qualitative Valence-Bond Descriptions of Electron-Rich Molecules: Pauling “3-Electron Bonds” and “Increased-Valence” Theory


Book Description

This book provides qualitative molecular orbital and valence-bond descriptions of the electronic structures for electron-rich molecules, with strong emphasis given to the valence-bond approach. Electron-rich molecules form an extremely large class of molecules, and the results of quantum mechanical studies from different laboratories indicate that qualitative valence-bond descriptions for many of these molecules are incomplete in so far as they usually omit "long-bond" Lewis structures from elementary descriptions of bonding. For example, the usual representation for the electronic structure of the ground-state for 03 involves resonance between the (+1 o and Until standard Lewis structures ~ ~ (-I . b:'" ~d· . . . . , recently, any contribution to resonance of the "long-bond" (or spin-paired o •• / •• ,. . has been largely ignored. diradica~ Lewis structure However, it :0 . 0. . e-. . . . . ______ " has now been calculated to be a very important structure. For the ground-states of numerous other systems, calculations also indicate that "long-bond" structures are more important than is usually supposed, and therefore they should frequently be included in qualitative valence-bond descriptions of electronic structure. The book describes how this may be done, and some of the resulting consequences for the interpretation of the electronic structure, bond properties and reactivities of various electron-rich molecules. When appropriate, molecular orbital and valence bond descriptions of bonding are compared, and relationships that exist between them are derived.




Molecular Spectroscopy


Book Description

Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.




Encyclopedia of Polymeric Nanomaterials


Book Description

Over the last few years, nanoscience and nanotechnology have been the focus of significant research attention, both from academia and industry. This sustained focus has in-turn driven the interdisciplinary field of material science research to the forefront of scientific inquiry through the creation and study of nanomaterials. Nanomaterials play an important role in the development of new materials as they can be used to influence and control physical properties and specific characteristics of other materials. Nanostructured materials that have been created include nanoparticles, nanocapsules, nanoporous materials, polymer multi-layers to name a few. These are increasingly used across applications as diverse as automotive, environment, energy, catalysis, biomedical, pharmaceutical, and polymer industries. The Encyclopedia of Polymeric Nanomaterials (EPN) intends to be a comprehensive reference work on this dynamic field studying nanomaterials within the context of the relationship between molecular structure and the properties of polymeric materials. Alphabetically organized as an encyclopedic Major Reference Work, EPN will cover the subject along multiple classification axes represented by name, source, properties, function, and structures or even processes, applications and usage. The underlying themes of the encyclopedia has been carefully identified to be based not just on material-based and function-based representation but also on structure- and process-based representation. The encyclopedia will have an exclusive focus on polymeric nanomaterials (for e.g., nanoceramics, nanocomposites, quantum dots, thin films) and will be a first of its kind work to have such an organization providing an overview to the concepts, practices and applications in the field. The encyclopedia intends to cover research and development work ranging from the fundamental mechanisms used for the fabrication of polymeric nanomaterials to their advanced application across multiple industries.




Angular Momentum Theory Applied to Interactions in Solids


Book Description

From December 1985 through March 1986 the text of this book formed the basis of an in-hours course taught by the author at Harry Diamond Laborato ries. Considerable assistance in revising and organizing the first draft was given by John Bruno. The original draft of these notes was based on a collection of lectures delivered at the Universidade Federal de Pernambuco, Recife, Brazil, between 2 November 1981 and 2 December 1981. The visit to Recife was a response to an invi tation of Professor Gilberto F. de Sa of the Physics Department. In the preparation of these notes I made many requests of my coworkers for earlier resul ts and recollections of our early work. Among those consul ted were Donald Wortman, Nick Karayianis, and Richard Leavitt. Further, a number of .suggestions from my Brazilian colleagues helped make the lectures more clear. Particular among these were Professor Oscar Malta and Professor Alfredo A. da Gama both of whom I wish to thank for their help. Encouragement and assistance with funding for much of this work came from Leon Esterowitz of the Naval Research Laboratory and Rudolph Buser and Albert Pinto of the center for Night Vision and Electro-Optics.