Superconductivity Research Developments


Book Description

Superconductivity is a phenomenon occurring in certain materials at extremely low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect). The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, on the other hand, drops abruptly to zero when the material is cooled below its "critical temperature", typically 20 kelvin or less. An electrical current flowing in a loop of superconducting wire can persist indefinitely with no power source. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealisation of "perfect conductivity" in classical physics. Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in most ferromagnetic metals. In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. And, because the superconducting state persists up to more manageable temperatures, more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered. This new book presents leading research from around the world in this dynamic field.




Leading-edge Superconductivity Research Developments


Book Description

This new book focuses on superconductivity which is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, worldwide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking.Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such 'strongly correlated' solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics.




Theory Of Superconductivity


Book Description

Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.




Recent Developments in Superconductivity Research


Book Description

Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.




Superconductivity


Book Description

This book presents current research from across the globe in the study of superconductivity theory, materials and applications. Topics discussed include tunnelling spectroscopy of novel layered superconductors; stability conditions of high-Tc superconductors; a study of the superconducting phase in metallic superconductors; numerical calculation of trapped magnetic field for bulk superconductors; ion modified high-Tc Josephson junctions and SQUIDS; and vortices in high temperature superconductors.




Superconductivity


Book Description

This text consists of 13 chapters each of them defining in depth the chapter subject and surveying recent developments in superconductivity. The main objective of the book is to summarise the recent advances in material science of high-Tc superconductors, specify their properties, processing, and applications.




Superconductivity


Book Description

"Blurb & Contents" "Copies of Onnes's or Meissner's lab notebooks--this is the stuff of science. This book is truly a tour de force. I cannot think of a single person working in the area of superconductivity who would not be totally absorbed by it." Materials & Design The first truly comprehensive history of superconductivity, from the first studies in the late 19th century to the present. It delves deeply into a largely undocumented early history, marked by H. Kamerlingh Onnes's first successes with mercury in 1911 and extending to the onset of World War II. Also encompasses materials development of the fifties, the work that culminated in the BCS theory of the early sixties, and the important recent application of ceramic oxides.




New Developments in Superconductivity Research


Book Description

High-Tc superconductors have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This book presents leading research from around the world in this exciting field.




100 Years of Superconductivity


Book Description

Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in supe




High Temperature Superconductivity 2


Book Description

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.




Recent Books