Superconductor/ferromagnet Nanostructures: An Illustration Of The Physics Of Hybrid Nanomaterials


Book Description

It used to be difficult to reliably fabricate clean heterostructures using magnetic and superconducting layers. Today this is no longer the case; such reproducible superconductor/ferromagnet heterostructures enable the quantitative study of the rich and varied phenomena associated with ferromagnet/superconductor proximity effects. These structures are eminent, suitable candidates for many switching devices, ranging from non-volatile low power memory elements to quantum computing applications involving Josephson junctions.This book's main purpose is to explain how the equilibrium and transport properties of these heterostructures can be accurately calculated starting from a standard BCS type Hamiltonian. The main techniques, including both analytical and numerical methods, are discussed in detail. Results obtained from these calculations are shown to be in excellent quantitative agreement with experiment.This is a theory book, but the theory is neither abstruse nor esoteric. Knowledge of only introductory graduate physics has been assumed; a solid undergraduate training and a bit of perseverance would also be enough. This book can easily be read and understood by experimentalists, and just about anybody can grasp the basics by referring to the figures and explanations. Quite apart from the manifold applications of superconductor/ferromagnet nanostructures, studying them provides us with considerable insights into fundamental physics and the general study of hybrid nanomaterials.




Superinsulators, Bose Metals And High-tc Superconductors: The Quantum Physics Of Emergent Magnetic Monopoles


Book Description

In 1931 Dirac showed that topologically quantized single magnetic charges, magnetic monopoles, while classically forbidden in a gauge theory, are allowed alongside electric charges in a quantum theory of electromagnetism. Such topological magnetic excitations are indeed admitted in the spectrum of most grand unified field theories of elementary interactions. Despite 40 years of dedicated search efforts, nonetheless, they have never shown up in any experiment. This, however, does not preclude the possibility of topological magnetic monopoles being realized as excitations in emergent condensed matter states, where they would be much lighter and easier to create.This book is about the physical effects of such emergent magnetic monopoles. These range from a new mechanism for local, strong pairing of electrons possibly relevant for high-T superconductivity, to the formation of a new quantum phase of matter when monopoles condense. In such a condensate the electric interaction becomes extremely strong, so much so that only extended neutral states survive, with the consequence of an infinite resistance, even at finite temperatures. This state, called a superinsulator, is a dual superconductor and has been experimentally detected in various materials. In a superinsulator the electric interaction becomes analogous to the strong interaction holding quarks together in colour-neutral hadrons. Even more interesting is the case when the condensate carries both magnetic and electric charge. The ensuing state has properties that are strikingly reminiscent of the mysterious pseudogap state of high-T superconductors. Magnetic monopoles might thus have been hiding in plain sight where no one was looking for them for a long time.




Nanostructure Science and Technology


Book Description

Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.




Clinical Applications of Magnetic Nanoparticles


Book Description

Offering the latest information in magnetic nanoparticle (MNP) research, this book builds upon the success of the first volume and provides an updated and comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. The book captures some of emerging research area which was not available in the first volume. Good Manufacturing Practices and Commercialization of MNPs are also included. This volume, also written by some of the most qualified experts in the field, incorporates new developments in the literature, and continues to bridge the gaps between the different areas in this field.




Theoretical Physics and Astrophysics


Book Description

The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature




Intrinsically Conducting Polymers: An Emerging Technology


Book Description

This book contains the majority of the papers presented at the NATO Ad vanced Research Workshop (ARW) held in Burlington, Vermont, USA on October 12-15, 1992. This ARW was the first of its kind to address the subject of intrinsically conducting polymers with an emphasis on processing and technological applications. The NATO ARW format was followed in that the subjects addressed here were limited in number but discussed in detail with the attendance being limited to a small number of selected scientists. The ARW brought together lecturers who are leaders in their respective fields from a wide range of NATO and non-NATO countries (a total of 11 countries) with the support of the NATO Scientific Affairs Division and some support from Champlain Cable Corporation. The total number of par ticipants was 33 and the number of presentations was 24. The speakers were chosen based on the topics selected for this workshop and repre sented industry, universities and government laboratories. The field of conducting polymers has grown rapidly during the past few years with important developments in materials processing and fabrica tion that brought about active research programs focusing on the use of these polymers as "smart" materials in technological applications and devices in academic and industrial research laboratories.




Frontiers in Crystalline Matter


Book Description

For much of the past 60 years, the U.S. research community dominated the discovery of new crystalline materials and the growth of large single crystals, placing the country at the forefront of fundamental advances in condensed-matter sciences and fueling the development of many of the new technologies at the core of U.S. economic growth. The opportunities offered by future developments in this field remain as promising as the achievements of the past. However, the past 20 years have seen a substantial deterioration in the United States' capability to pursue those opportunities at a time when several European and Asian countries have significantly increased investments in developing their own capacities in these areas. This book seeks both to set out the challenges and opportunities facing those who discover new crystalline materials and grow large crystals and to chart a way for the United States to reinvigorate its efforts and thereby return to a position of leadership in this field.




The Role of Topology in Materials


Book Description

This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.




Introduction to Magnetic Random-Access Memory


Book Description

Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities.




Springer Handbook of Condensed Matter and Materials Data


Book Description

Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200 page volume. The data, encapsulated in 914 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the prominent Springer Handbook editors, W. Martienssen and H. Warlimont themselves. The Handbook is designed to be useful as a desktop reference for fast and easy retrieval of essential and reliable data in the lab or office. References to more extensive data sources are also provided in the book and by interlinking to the relevant sources on the enclosed CD-ROM. Physicists, chemists and engineers engaged in fields of solid-state sciences and materials technologies in research, development and application will appreciate the ready access to the key information coherently organized within this wide-ranging Handbook. From the reviews: "...this is the most complete compilation I have ever seen... When I received the book, I immediately searched for data I never found elsewhere..., and I found them rapidly... No doubt that this book will soon be in every library and on the desk of most solid state scientists and engineers. It will never be at rest." -Physicalia Magazine