Superinsulators, Bose Metals and High-Tc Superconductors: The Quantum Physics of Emergent Magnetic Monopoles


Book Description

In 1931 Dirac showed that topologically quantized single magnetic charges, magnetic monopoles, while classically forbidden in a gauge theory, are allowed alongside electric charges in a quantum theory of electromagnetism. Such topological magnetic excitations are indeed admitted in the spectrum of most grand unified field theories of elementary interactions. Despite 40 years of dedicated search efforts, nonetheless, they have never shown up in any experiment. This, however, does not preclude the possibility of topological magnetic monopoles being realized as excitations in emergent condensed matter states, where they would be much lighter and easier to create.This book is about the physical effects of such emergent magnetic monopoles. These range from a new mechanism for local, strong pairing of electrons possibly relevant for high-T superconductivity, to the formation of a new quantum phase of matter when monopoles condense. In such a condensate the electric interaction becomes extremely strong, so much so that only extended neutral states survive, with the consequence of an infinite resistance, even at finite temperatures. This state, called a superinsulator, is a dual superconductor and has been experimentally detected in various materials. In a superinsulator the electric interaction becomes analogous to the strong interaction holding quarks together in colour-neutral hadrons. Even more interesting is the case when the condensate carries both magnetic and electric charge. The ensuing state has properties that are strikingly reminiscent of the mysterious pseudogap state of high-T superconductors. Magnetic monopoles might thus have been hiding in plain sight where no one was looking for them for a long time.




Superinsulators, Bose Metals And High-tc Superconductors: The Quantum Physics Of Emergent Magnetic Monopoles


Book Description

In 1931 Dirac showed that topologically quantized single magnetic charges, magnetic monopoles, while classically forbidden in a gauge theory, are allowed alongside electric charges in a quantum theory of electromagnetism. Such topological magnetic excitations are indeed admitted in the spectrum of most grand unified field theories of elementary interactions. Despite 40 years of dedicated search efforts, nonetheless, they have never shown up in any experiment. This, however, does not preclude the possibility of topological magnetic monopoles being realized as excitations in emergent condensed matter states, where they would be much lighter and easier to create.This book is about the physical effects of such emergent magnetic monopoles. These range from a new mechanism for local, strong pairing of electrons possibly relevant for high-T superconductivity, to the formation of a new quantum phase of matter when monopoles condense. In such a condensate the electric interaction becomes extremely strong, so much so that only extended neutral states survive, with the consequence of an infinite resistance, even at finite temperatures. This state, called a superinsulator, is a dual superconductor and has been experimentally detected in various materials. In a superinsulator the electric interaction becomes analogous to the strong interaction holding quarks together in colour-neutral hadrons. Even more interesting is the case when the condensate carries both magnetic and electric charge. The ensuing state has properties that are strikingly reminiscent of the mysterious pseudogap state of high-T superconductors. Magnetic monopoles might thus have been hiding in plain sight where no one was looking for them for a long time.




Topological Phase Transitions And New Developments


Book Description

Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.




An Introduction to the Confinement Problem


Book Description

This book addresses the confinement problem, which quite generally deals with the behavior of non-abelian gauge theories, and the force which is mediated by gauge fields, at large distances. The word “confinement” in the context of hadronic physics originally referred to the fact that quarks and gluons appear to be trapped inside mesons and baryons, from which they cannot escape. There are other, and possibly deeper meanings that can be attached to the term, and these will be explored in this book. Although the confinement problem is far from solved, much is now known about the general features of the confining force, and there are a number of very well motivated theories of confinement which are under active investigation. This volume gives a both pedagogical and concise introduction and overview of the main ideas in this field, their attractive features, and, as appropriate, their shortcomings.




Gauge Fields and Strings


Book Description

Based on his own work, the author synthesizes the most promising approaches and ideals in field theory today. He presents such subjects as statistical mechanics, quantum field theory and their interrelation, continuous global symmetry, non-Abelian gauge fields, instantons and the quantam theory of loops, and quantum strings and random surfaces. This book is aimed at postgraduate students studying field theory and statistical mechanics, and for research workers in continuous global theory.




Macroscopic Quantum Tunneling


Book Description

A coherent and self-contained account of macroscopic quantum phenomena for graduate students and researchers.




Principles of Neutron Scattering from Condensed Matter


Book Description

Neutron scattering is arguably the most powerful technique available for looking inside materials and seeing what the atoms are doing. This textbook provides a comprehensive and up-to-date account of the many different ways neutrons are being used to investigate the behaviour of atoms and molecules in bulk matter. It is written in a pedagogical style, and includes many examples and exercises. Every year, thousands of experiments are performed at neutron scattering facilities around the world, exploring phenomena in physics, chemistry, materials science, as well as in interdisciplinary areas such as biology, materials engineering, and cultural heritage. This book fulfils a need for a modern and pedagogical treatment of the principles behind the various different neutron techniques, in order to provide scientists with the essential formal tools to design their experiments and interpret the results. The book will be of particular interest to researchers using neutrons to study the atomic-scale structure and dynamics in crystalline solids, simple liquids and molecular fluids by diffraction techniques, including small-angle scattering and reflectometry, and by spectroscopic methods, ranging from conventional techniques for inelastic and quasielastic scattering to neutron spin-echo and Compton scattering. A comprehensive treatment of magnetic neutron scattering is given, including the many and diverse applications of polarized neutrons.




Statistical Field Theory


Book Description

A thorough and pedagogical introduction to phase transitions and exactly solved models in statistical physics and quantum field theory.




Fundamentals and Applications of Magnetic Materials


Book Description

Students and researchers looking for a comprehensive textbook on magnetism, magnetic materials and related applications will find in this book an excellent explanation of the field. Chapters progress logically from the physics of magnetism, to magnetic phenomena in materials, to size and dimensionality effects, to applications. Beginning with a description of magnetic phenomena and measurements on a macroscopic scale, the book then presents discussions of intrinsic and phenomenological concepts of magnetism such as electronic magnetic moments and classical, quantum, and band theories of magnetic behavior. It then covers ordered magnetic materials (emphasizing their structure-sensitive properties) and magnetic phenomena, including magnetic anisotropy, magnetostriction, and magnetic domain structures and dynamics. What follows is a comprehensive description of imaging methods to resolve magnetic microstructures (domains) along with an introduction to micromagnetic modeling. The book then explores in detail size (small particles) and dimensionality (surface and interfaces) effects — the underpinnings of nanoscience and nanotechnology that are brought into sharp focus by magnetism. The hallmark of modern science is its interdisciplinarity, and the second half of the book offers interdisciplinary discussions of information technology, magnetoelectronics and the future of biomedicine via recent developments in magnetism. Modern materials with tailored properties require careful synthetic and characterization strategies. The book also includes relevant details of the chemical synthesis of small particles and the physical deposition of ultra thin films. In addition, the book presents details of state-of-the-art characterization methods and summaries of representative families of materials, including tables of properties. CGS equivalents (to SI) are included.




Problems in Quantum Field Theory


Book Description

A collection of problems in QFT, with complete solutions, for graduate students taking their first or second course.