Technical Abstract Bulletin


Book Description













Quieting the Boom


Book Description




The Power for Flight


Book Description

The NACA and aircraft propulsion, 1915-1958 -- NASA gets to work, 1958-1975 -- The shift toward commercial aviation, 1966-1975 -- The quest for propulsive efficiency, 1976-1989 -- Propulsion control enters the computer era, 1976-1998 -- Transiting to a new century, 1990-2008 -- Toward the future




Aeronautical Engineering


Book Description

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).




Parachute Recovery Systems


Book Description

The purpose of this manual is to provide recovery system engineers in government and industry with tools to evaluate, analyze, select, and design parachute recovery systems. These systems range from simple, one-parachute assemblies to multiple-parachute systems, and may include equipment for impact attenuation, flotation, location, retrieval, and disposition. All system aspects are discussed, including the need for parachute recovery, the selection of the most suitable recovery system concept, concept analysis, parachute performance, force and stress analysis, material selection, parachute assembly and component design, and manufacturing. Experienced recovery system engineers will find this publication useful as a technical reference book; recent college graduates will find it useful as a textbook for learning about parachutes and parachute recovery systems; and technicians with extensive practical experience will find it useful as an engineering textbook that includes a chapter on parachute- related aerodynamics. In this manual, emphasis is placed on aiding government employees in evaluating and supervising the design and application of parachute systems. The parachute recovery system uses aerodynamic drag to decelerate people and equipment moving in air from a higher velocity to a lower velocity and to a safe landing. This lower velocity is known as rate of descent, landing velocity, or impact velocity, and is determined by the following requirements: (1) landing personnel uninjured and ready for action, (2) landing equipment and air vehicles undamaged and ready for use or refurbishment, and (3) impacting ordnance at a preselected angle and velocity.




High-Speed Dreams


Book Description

In High-Speed Dreams, Erik M. Conway constructs an insightful history that focuses primarily on the political and commercial factors responsible for the rise and fall of American supersonic transport research programs. Conway charts commercial supersonic research efforts through the changing relationships between international and domestic politicians, military/NASA contractors, private investors, and environmentalists. He documents post-World War II efforts at the National Advisory Committee on Aeronautics and the Defense Department to generate supersonic flight technologies, the attempts to commercialize these technologies by Britain and the United States during the 1950s and 1960s, environmental campaigns against SST technology in the 1970s, and subsequent attempts to revitalize supersonic technology at the end of the century. High-Speed Dreams is a sophisticated study of politics, economics, nationalism, and the global pursuit of progress. Historians, along with participants in current aerospace research programs, will gain valuable perspective on the interaction of politics and technology.




Innovation in Flight


Book Description