Stimuli-responsive Drug Delivery Systems


Book Description

The increased understanding of molecular aspects associated with chronic diseases, such as cancer and the role of tumor microenvironment, has led to the identification of endogenous and exogenous stimuli that can be exploited to devise “stimuli-responsive” materials for site-specific drug delivery applications. This book provides a comprehensive account on the design, materials chemistry, and application aspects behind these novel stimuli-responsive materials. Setting the scene, the editors open with a chapter addressing the need for smart materials in delivery applications for therapy, imaging and disease diagnosis. The following chapter describes the key physical and chemical aspects of smart materials, from lipids to polymers to hybrid materials, providing the reader with a springboard to delve into the more application oriented chapters that follow. With in-depth coverage of key drug delivery systems such as pH-responsive, temperature responsive, enzyme-responsive and light responsive systems, this book provides a rigorous foundation to the field. A perfect resource for graduate students and newcomers, the closing chapter on regulatory and commercialization challenges also makes the book ideal for those wanting to take the next step towards clinical translation.




Organic Materials as Smart Nanocarriers for Drug Delivery


Book Description

Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers. - Explores the most recent molecular- and structure-based applications of organic smart nanocarriers in drug delivery - Highlights different smart nanocarriers and assesses their intricate organic structural properties for improving drug delivery - Assesses how molecular organic frameworks lead to more effective drug delivery systems




Pharmaceutical Applications of Supramolecules


Book Description

This book outlines the use of supramolecules as different pharmaceutical drugs. Supramolecular chemistry in pharmaceutical sciences is quite a young and rapidly developing field. Supramolecular assemblies might offer an alternative for existing pharmaceutical formulations, as they facilitate the improvement of physicochemical and pharmacological properties i.e., higher bioavailability, better biocompatibility and drug-targeting, fewer multidrug-resistances. This book offers an overview of the recent advances in supramolecular structures and discusses the future aspects and challenges related to the development of these molecules, providing also a perspective on how to overcome these issues. Divided into 13 chapters contributed by experts in their field, the book provides a deeper understanding of intermolecular forces playing pivotal roles in mediating the interactions between chemical molecules and biological systems by focusing on different applications of supramolecular compounds. In this book, readers will find valuable insights into the preparation of supramolecules and the latest research and development trends of supramolecules as anticancer drugs, including liquid-crystalline supramolecular assemblies, and as antimicrobial, antiviral, anti-inflammatory and cardiovascular drugs. Particular attention is given to the application of supramolecules in the fields of biomedicine, bioimaging, and vaccine development. Given its breadth, this book will appeal to a wide readership from researchers and students interested in these fields to professionals in the pharma industry.




Single-Chain Polymer Nanoparticles


Book Description

This first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.




Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals


Book Description

This book explores the role of nanotechnology in the delivery of natural phytoconstituents and cosmeceuticals. It presents polymeric nanocarriers, lipid-based nanocarriers, metal/metal oxide nanocarriers, protein nanocarriers, and dendrimers for the delivery of phytoconstituents. Further, it focuses on the usage of phytocompounds in various cosmeceutical products and nano delivery technologies used in the delivery of various cosmeceuticals. Finally, the book reviews the toxicity issues of nanoparticles in the delivery of phytoconstituents and cosmeceuticals and regulatory aspects for clinical applications of nano phytomedicines. This book is helpful for academicians and researchers working in pharmaceutical sciences, nano science, material science, plant science, and cosmetic science.




Polymer Nanocomposites in Biomedical Engineering


Book Description

This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible.




Dendrimer-Based Nanotherapeutics


Book Description

Dendrimer-Based Nanotherapeutics delivers a comprehensive resource on the use of dendrimer-based drug delivery. Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. This book compiles the contribution of dendrimers in the field of nanotechnology to aid researchers in exploring dendrimers in the field of drug delivery and related applications. This book covers the history of the area to the most recent research. The starting chapter covers detailed information about basic properties about dendrimers i.e. properties, nomenclature, synthesis methods, types, characterization of dendrimers, safety and toxicity issues of dendrimers. Further chapters discuss the most recent advancements in the field of dendrimer i.e. dendrimer-drug conjugates, PEGylated dendrimer, dendrimer surface engineering, dendrimer hybrids, dendrimers as solubility enhancement, in targeting and delivery of drugs, as photodynamic therapy, in tissue engineering, as imaging contrast agents, as antimicrobial agents, advances in targeted dendrimers for cancer therapy and future considerations of dendrimers. Dendrimer-Based Nanotherapeutics will help the readers to understand the most recent progress in the field of dendrimer-based research, suitable for pharmaceutical scientists, advanced students, and those working in related healthcare fields. - Discusses various routes such as oral, pulmonary, transdermal, delivery and local administration of dendrimer delivery of bioactive - Explores a wide range of applications of dendrimer-based drug delivery using the latest advancements in nanomedicine - Provides the most recent research on dendrimers as well as context and background, providing a useful resource for all levels of researcher




Nanoparticles in Medicine


Book Description

This book describes the medical applications of inorganic nanoparticles. Nanomedicine is a relatively advanced field, which enhances the treatment of various diseases, offering new options for overcoming the problems associated with the use of conventional medicines. Discussing the toxicological and safety aspects associated with medical applications of nanoparticles, the book presents the latest research on topics such as emerging nanomaterials for cancer therapy, applications of nanoparticles in dentistry, and fluoride nanoparticles for biomedical applications, and also includes chapters on the use of nanoparticles such as silver and gold. /div




Nanotechnology in Medicine


Book Description

Nanomedicine is the field of science that deals with organic applications of medicine at the nano-scale level. It primarily addresses finding, anticipating, and treating sickness, as well as using nanotechnology to assist in controlling human frameworks at the cellular level. The nature of nanotechnology allows it to address numerous medical issues in humans. This book offers comprehensive information to better comprehend and apply multifunctional nanoparticles in nanomedicine, and thus open avenues in the field. Medicating at the nanolevel is an exceptional therapeutic avenue, as it avoids symptoms associated with conventional medicines. This book investigates recent insights into structuring novel drug delivery frameworks. It concentrates on the physical characteristics of drug delivery transporters, and the preliminary procedures involved in their use. The book offers in-depth detail that benefits academics and researchers alike, containing broad research from experts in the field, and serves as a guide for students and researchers in the field of nanomedicine, drug delivery, and nanotechnology.