Modern Mechanical Surface Treatment


Book Description

The only comprehensive, systematic comparison of major mechanical surface treatments, their effects, and the resulting material properties. The result is an up-to-date, full review of this topic, collating the knowledge hitherto spread throughout many original papers. The book begins with a description of elementary processes and mechanisms to give readers an easy introduction, before proceeding to offer systematic, detailed descriptions of the various techniques and three very important types of loading: thermal, quasistatic, and cyclic loading. It combines and correlates experimental and model aspects, while supplying in-depth explanations of the mechanisms and a very high amount of exemplary data.




Surface Treatment & Finishing of Aluminium


Book Description

This practical handbook provides an introduction to all aspects of decorative, protective and engineering finishes applicable to aluminium. Descriptions of the processes concerned, including properties and methods of application, their benefits and limitations, are given, making this manual a useful asset to managers, technologists and students.




Surface Treatment in Bonding Technology


Book Description

Surface Treatment in Bonding Technology provides valuable advice on surface treatment methods, modern measuring devices, and the appropriate experimentation techniques that are essential to create strong joints with a reliable service life. The book's focus is on the detailed and up-to-date analysis of surface treatment methods for metallic and polymer substrates. An analysis of factors affecting the surface preparation stage, together with advice on selection, is also provided. Essential theory is combined with experimentation techniques and industry practice to provide a guide that is both practical and academically rigorous. Including a general introduction to bonding, as well as coverage of mechanical, chemical and electrochemical methods, this book is the ideal primer for anyone working with or researching adhesive bonding. - Provides detailed descriptions of surface treatments and their mechanisms that will help readers build a deep understanding of these fundamental techniques - Includes a thorough survey of recent advances in research in surface treatments of metals and polymers - Provides technical advice on experimental testing methods throughout the book







Surface Treatment of Materials for Adhesive Bonding


Book Description

Aimed at engineers and materials scientists in a wide range of sectors, this book is a unique source of surface preparation principles and techniques for plastics, thermosets, elastomers, ceramics and metals bonding. With emphasis on the practical, it draws together the technical principles of surface science and surface treatments technologies to enable practitioners to improve existing surface preparation processes to improve adhesion and, as a result, enhance product life. This book describes and illustrates the surface preparations and operations that must be applied to a surface before acceptable adhesive bonding is achieved. It is meant to be an exhaustive overview, including more detailed explanation where necessary, in a continuous and logical progression. The book provides a necessary grounding in the science and practice of adhesion, without which adequate surface preparation is impossible. Surface characterization techniques are included, as is an up-to-date assessment of existing surface treatment technologies such as Atmospheric Plasma, Degreasing, Grit blasting, laser ablation and more. Fundamental material considerations are prioritised over specific applications, making this book relevant to all industries using adhesives, such as medical, automotive, aerospace, packaging and electronics. This second edition represents a full and detailed update, with all major developments in the field included and three chapters added to cover ceramic surface treatment, plasma treatment of non-metallic materials, and the effect of additives on surface properties of plastics. - A vital resource for improving existing surface treatment processes to increase product life by creating stronger, more durable adhesive bonds - Relevant across a variety of industries, including medical, automotive and packaging - Provides essential grounding in the science of surface adhesion, and details how this links with the practice of surface treatment




Laser Surface Treatments for Tribological Applications


Book Description

This reference presents comprehensive information about laser surface treatments for tribological applications. Chapters of the book highlight the importance of laser technology in modifying materials to optimize the effects of friction and lubrication, by explaining a range of surface modification methods used in industries. These methods include hardening, melting, alloying, cladding and texturing. The knowledge in the book is intended to give an in-depth understanding about the role of laser technology in tribology and the manufacture of industrial materials and surfaces for special applications. Key Features: - 10 chapters on topics relevant to tribology and industrial applications of laser material processing - Comprehensively covers laser surface modification of metals and alloys - Explains a wide range of surface modification methods (hardening, melting, alloying, cladding and texturing) - Covers material and tribological characterization of surfaces - Presents information in a simple structured layout for easy reading, with introductory notes for learners - Provides references for further reading This book is an ideal reference for students and learners in courses related to engineering, manufacturing and materials science. Researchers, industrial professionals and general readers interested in laser assisted machining processes and surface modification techniques will also find the book to be an informative reference on the subject.




Handbook of Research on Tribology in Coatings and Surface Treatment


Book Description

Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. The Handbook of Research on Tribology in Coatings and Surface Treatment evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.




Modern Surface Technology


Book Description

This translation of a successful German title provides a broad and fundamental overview of current coating technology. Edited by experts from one of the largest research centers for this field in Germany, this valuable reference combines research and industrial perspectives, treated by authors from academia and industry alike. They discuss the potential of the many innovations introduced into industrial application in recent years, allowing materials scientists and engineers to find the appropriate solution for their own specific coating problems. Thus, with the aid of this book, it is possible to make coating technology an integral part of R&D, construction and production.







Surfaces and Interfaces of Electronic Materials


Book Description

An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth with references to the most authoritative sources for more exhaustive discussions, while numerous examples are provided throughout to illustrate the applications of each technique. With its general reading lists, extensive citations to the text, and problem sets appended to all chapters, this is ideal for students of electrical engineering, physics and materials science. It equally serves as a reference for physicists, material science and electrical and electronic engineers involved in surface and interface science, semiconductor processing, and device modeling and design. This is a coproduction of Wiley and IEEE * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/