Surveys in Differential-Algebraic Equations IV


Book Description

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.




Surveys in Differential-Algebraic Equations III


Book Description

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.




Applications of Differential-Algebraic Equations: Examples and Benchmarks


Book Description

This volume encompasses prototypical, innovative and emerging examples and benchmarks of Differential-Algebraic Equations (DAEs) and their applications, such as electrical networks, chemical reactors, multibody systems, and multiphysics models, to name but a few. Each article begins with an exposition of modelling, explaining whether the model is prototypical and for which applications it is used. This is followed by a mathematical analysis, and if appropriate, a discussion of the numerical aspects including simulation. Additionally, benchmark examples are included throughout the text. Mathematicians, engineers, and other scientists, working in both academia and industry either on differential-algebraic equations and systems or on problems where the tools and insight provided by differential-algebraic equations could be useful, would find this book resourceful.




Progress in Differential-Algebraic Equations II


Book Description

This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.




Surveys in Differential-Algebraic Equations I


Book Description

The need for a rigorous mathematical theory for Differential-Algebraic Equations (DAEs) has its roots in the widespread applications of controlled dynamical systems, especially in mechanical and electrical engineering. Due to the strong relation to (ordinary) differential equations, the literature for DAEs mainly started out from introductory textbooks. As such, the present monograph is new in the sense that it comprises survey articles on various fields of DAEs, providing reviews, presentations of the current state of research and new concepts in - Controllability for linear DAEs - Port-Hamiltonian differential-algebraic systems - Robustness of DAEs - Solution concepts for DAEs - DAEs in circuit modeling. The results in the individual chapters are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.




Semigroups of Operators – Theory and Applications


Book Description

This book features selected and peer-reviewed lectures presented at the 3rd Semigroups of Operators: Theory and Applications Conference, held in Kazimierz Dolny, Poland, in October 2018 to mark the 85th birthday of Jan Kisyński. Held every five years, the conference offers a forum for mathematicians using semigroup theory to discover what is happening outside their particular field of research and helps establish new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The book is intended for researchers, postgraduate and senior students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimisation and optimal control. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while Hille and Yosida’s fundamental generation theorem dates back to the forties. The theory was originally designed as a universal language for partial differential equations and stochastic processes but, at the same time, it started to become an independent branch of operator theory. Today, it still has the same distinctive character: it develops rapidly by posing new ‘internal’ questions and, in answering them, discovering new methods that can be used in applications. On the other hand, it is being influenced by questions from PDE’s and stochastic processes as well as from applied sciences such as mathematical biology and optimal control and, as a result, it continually gathers new momentum. However, many results, both from semigroup theory itself and the applied sciences, are phrased in discipline-specific languages and are hardly known to the broader community.




Differential Equation Solutions with MATLAB®


Book Description

This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.




System- and Data-Driven Methods and Algorithms


Book Description

An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.




IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018


Book Description

This volume contains the proceedings of the IUTAM Symposium on Model Order Reduction of Coupled System, held in Stuttgart, Germany, May 22–25, 2018. For the understanding and development of complex technical systems, such as the human body or mechatronic systems, an integrated, multiphysics and multidisciplinary view is essential. Many problems can be solved within one physical domain. For the simulation and optimization of the combined system, the different domains are connected with each other. Very often, the combination is only possible by using reduced order models such that the large-scale dynamical system is approximated with a system of much smaller dimension where the most dominant features of the large-scale system are retained as much as possible. The field of model order reduction (MOR) is interdisciplinary. Researchers from Engineering, Mathematics and Computer Science identify, explore and compare the potentials, challenges and limitations of recent and new advances.




Progress in Differential-Algebraic Equations


Book Description

This book contains the proceedings of the 8th Workshop on Coupled Descriptor Systems held March 2013 in the Castle of Eringerfeld, Geseke in the neighborhood of Paderborn, Germany. It examines the wide range of current research topics in descriptor systems, including mathematical modeling, index analysis, wellposedness of problems, stiffness and different time-scales, cosimulation and splitting methods and convergence analysis. In addition, the book also presents applications from the automotive and circuit industries that show that descriptor systems provide challenging problems from the point of view of both theory and practice. The book contains nine papers and is organized into three parts: control, simulation, and model order reduction. It will serve as an ideal resource for applied mathematicians and engineers, in particular those from mechanics and electromagnetics, who work with coupled differential equations.