Sustainable Industrial Processes Based on Microalgae


Book Description

Sustainable Industrial Processes based on Microalgae addresses the current applications and potential uses of microalgae for processing waste and wastewater streams, along with potential applications of the produced biomass. Each chapter explores the different steps of the subject, from the importance of selecting a robust strain that is able to adapt to harsh and changing environmental conditions, to production and harvesting technologies, and end applications of the produce biomass, namely agriculture and feed production. It covers microalgae biology, common microalgal strains used for waste and wastewater treatment, cultivation strategies, novel extraction techniques, safety issues, and current market opportunities and challenges. Moreover, the book explores the potential utilization of the produced biomass focusing on industries that show higher potential such as agriculture and feed production. - Gives insights in sustainable, energy sufficient and economically-viable microalgae-based processes - Applies microalgal biomass to produce high value biopesticides, bio-stimulants and animal feeds/feed ingredients - Discusses current challenges such as the need for large surface areas and provides suggestions to overcome these challenges




Sustainable Downstream Processing of Microalgae for Industrial Application


Book Description

Microalgae can be future resource for industrial biotechnology In current energy crisis era, microalgae are under tremendous research focus for the production of biodiesel due to their high photosynthetic efficiency, growth rate and high lipid content compared to territorial plants. However, the large-scale production of algal biomass and downstream processing of harvested algae towards bio-fuels are facing several challenges from economic viability perspective. Apart from bio-fuels, the microalgae synthesize number of bio-molecules such as pigments (e.g., chlorophyll, carotenoid), protein (e.g., lectin, phycobiliprotein), and carbohydrates (e.g., agar, carrageenan, alginate, fucodian) which are available in the various forms of microalgal products. Therefore, developing a strategy for large-scale production and use of algal biomass for the co-production of these value-added macromolecules is thus imperative for the improvement of the economics of algal biorefinery. In the above context, this book covers three major areas (i) commercial-scale production of bio-molecules from microalgae, (ii) sustainable approach for industrial-scale operation, and (iii) optimization of downstream processes. Each of these sections is composed of several chapters written by the renowned academicians/industry experts. Furthermore, in this book, a significant weightage is given to the industry experts (around 50%) to enrich the industrial perspectives. We hope that amalgamate of fundamental knowledge from academicians and applied research information from industry experts will be useful for forthcoming implementation of a sustainable integrated microalgal biorefinery. This book highlights following. Explores biomolecules from microalgae and their applications Discusses microalgae cultivations and harvesting Examines downstream processing of biomolecules Explores sustainable integrated approaches for industrial scale operations Examines purification techniques specific for microalgal proteins, Omega 3 fatty Acids, carbohydrates, and pigments




Microalgae Cultivation for Biofuels Production


Book Description

Microalgae Cultivation for Biofuels Production explores the technological opportunities and challenges involved in producing economically competitive algal-derived biofuel. The book discusses efficient methods for cultivation, improvement of harvesting and lipid extraction techniques, optimization of conversion/production processes of fuels and co-products, the integration of microalgae biorefineries to several industries, environmental resilience by microalgae, and a techno-economic and lifecycle analysis of the production chain to gain maximum benefits from microalgae biorefineries. - Provides an overview of the whole production chain of microalgal biofuels and other bioproducts - Presents an analysis of the economic and sustainability aspects of the production chain - Examines the integration of microalgae biorefineries into several industries




Sustainable Industrial Wastewater Treatment and Pollution Control


Book Description

This book summarizes the advanced sustainable trends in removing toxic pollutants by environmental and biotechnological processes from both industrial wastewater and sewage wastewater. The book also provides an assessment of the potential application of several existing wastewater bioremediation techniques and introduces new cutting-edge technologies. Among other valuable information covered, here are the methods, procedures, materials (especially low-cost materials originating from industrial and agricultural waste), management of wastewater containing toxic pollutants, and valorization possibilities of waste resulting from the removal of toxic pollutants from wastewater. Tonnes of hazardous waste pollutants released by industries are a challenge worldwide. With the ever-growing population and shrinking landfill areas, managing the disposal of pollutants is a matter of severe concern. Industrial wastewater treatment, recycling, and reuse are serious issues in today’s context, not just to protect the environment from pollution, but also to conserve water resources so that water stress is reduced. This book is designed for engineers, scientists, and other professionals and serves as a good summary of the current state-of-the-art and innovative research challenges to control pollution for coming generations.




Microalgae-Based Biofuels and Bioproducts


Book Description

Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End Products compiles contributions from authors from different areas and backgrounds who explore the cultivation and utilization of microalgae biomass for sustainable fuels and chemicals. With a strong focus in emerging industrial and large scale applications, the book summarizes the new achievements in recent years in this field by critically evaluating developments in the field of algal biotechnology, whilst taking into account sustainability issues and techno-economic parameters. It includes information on microalgae cultivation, harvesting, and conversion processes for the production of liquid and gaseous biofuels, such as biogas, bioethanol, biodiesel and biohydrogen. Microalgae biorefinery and biotechnology applications, including for pharmaceuticals, its use as food and feed, and value added bioproducts are also covered. This book's comprehensive scope makes it an ideal reference for both early stage and consolidated researchers, engineers and graduate students in the algal field, especially in energy, chemical and environmental engineering, biotechnology, biology and agriculture. - Presents the most current information on the uses and untapped potential of microalgae in the production of bio-based fuels and chemicals - Critically reviews the state-of-the-art feedstock cultivation of biofuels and bioproducts mass production from microalgae, including intermediate stages, such as harvesting and extraction of specific compounds - Includes topics in economics and sustainability of large-scale microalgae cultivation and conversion technologies




Next-Generation Algae, Volume 1


Book Description

NEXT-GENERATION ALGAE This book brings together experts in relevant fields to describe the successful application of algae and their derivatives in agriculture, improving agricultural sustainability, harvesting and processing, food security, fishery, aquafarming, agriculture pollution, and state-of-the-art developments of algae in commercial and agriculture utilization. This book provides up-to-date and cutting-edge information on the application of algae in producing sustainable solutions to various challenges that arise from an increase in agricultural production, as well as its utilization in the bioremediation of industrial wastewater. Moreover, the book provides detailed information about the recent advancements in smart microalgae wastewater treatment using Internet of Things (IoT) and edge computing applications. Other topics covered include the use of microalgae in various applications; the use of algae to remove arsenic; algae’s role in plastic biodegradation, heavy metal bioremediation, and toxicity removal from industrial wastewater; the application of DNA transfer techniques in algae; the use of algae as food and in the production of food, ascorbic acid, health food, supplements, and food surrogates; relevant biostimulants and biofertilizers that could be derived from cyanobacterials and their role in sustainable agriculture; and algae’s application in the effective production of biofuels and bioenergy. Audience This book is aimed at a diverse audience including professionals, scientists, environmentalists, industrialists, researchers, innovators, and policymakers who have an interest in bioremediation technologies for extremely polluted environments, especially in water, air, and soil.




Handbook of Microalgae-Based Processes and Products


Book Description

The Handbook of Microalgae-based Processes and Products provides a complete overview of all aspects involved in the production and utilization of microalgae resources at commercial scale. Divided into four parts (fundamentals, microalgae-based processes, microalgae-based products, and engineering approaches applied to microalgal processes and products), the book explores the microbiology and metabolic aspects of microalgae, microalgal production systems, wastewater treatment based in microalgae, CO2 capture using microalgae, microalgae harvesting techniques, and extraction and purification of biomolecules from microalgae. It covers the largest number of microalgal products of commercial relevance, including biogas, biodiesel, bioethanol, biohydrogen, single-cell protein, single-cell oil, biofertilizers, pigments, polyunsaturated fatty acids, bioactive proteins, peptides and amino acids, bioactive polysaccharides, sterols, bioplastics, UV-screening compounds, and volatile organic compounds. Moreover, it presents and discusses the available engineering tools applied to microalgae biotechnology, such as process integration, process intensification, and techno-economic analysis applied to microalgal processes and products, microalgal biorefineries, life cycle assessment, and exergy analysis of microalgae-based processes and products. The coverage of a broad range of potential microalgae processes and products in a single volume makes this handbook an indispensable reference for engineering researchers in academia and industry in the fields of bioenergy, sustainable development, and high-value compounds from biomass, as well as graduate students exploring those areas. Engineering professionals in bio-based industries will also find valuable information here when planning or implementing the use of microalgal technologies. - Covers theoretical background information and results of recent research. - Discusses all commercially relevant microalgae-based processes and products. - Explores the main emerging engineering tools applied to microalgae processes, including techno-economic analysis, process integration, process intensification, life cycle assessment, and exergy analyses.




Biofuels from Algae


Book Description

This book provides in-depth information on basic and applied aspects of biofuels production from algae. It begins with an introduction to the topic, and follows with the basic scientific aspects of algal cultivation and its use for biofuels production, such as photo bioreactor engineering for microalgae production, open culture systems for biomass production and the economics of biomass production. It provides state-of-the-art information on synthetic biology approaches for algae suitable for biofuels production, followed by algal biomass harvesting, algal oils as fuels, biohydrogen production from algae, formation/production of co-products, and more. The book also covers topics such as metabolic engineering and molecular biology for algae for fuel production, life cycle assessment and scale-up and commercialization. It is highly useful and helps you to plan new research and design new economically viable processes for the production of clean fuels from algae. - Covers in a comprehensive but concise way most of the algae biomass conversion technologies currently available - Lists all the products produced from algae, i.e. biohydrogen, fuel oils, etc., their properties and potential uses - Includes the economics of the various processes and the necessary steps for scaling them up




Microalgal Biotechnology


Book Description

Microalgal Biotechnology presents an authoritative and comprehensive overview of the microalgae-based processes and products. Divided into 10 discreet chapters, the book covers topics on applied technology of microalgae. Microalgal Biotechnology provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the microalgae biotechnology field.




Sustainable Development of Algal Biofuels in the United States


Book Description

Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.