Computer Algebra and Symbolic Computation


Book Description

Mathematica, Maple, and similar software packages provide programs that carry out sophisticated mathematical operations. Applying the ideas introduced in Computer Algebra and Symbolic Computation: Elementary Algorithms, this book explores the application of algorithms to such methods as automatic simplification, polynomial decomposition, and polyno




Computer Algebra and Symbolic Computation


Book Description

This book provides a systematic approach for the algorithmic formulation and implementation of mathematical operations in computer algebra programming languages. The viewpoint is that mathematical expressions, represented by expression trees, are the data objects of computer algebra programs, and by using a few primitive operations that analyze and




Symbolic Computation and Education


Book Description

Geosciences particularly numerical weather predication, are demanding the highest levels of computer power available. The European Centre for Medium-Range Weather Forecasts, with its experience in using supercomputers in this field, organizes a workshop every other year bringing together manufacturers, computer scientists, researchers and operational users to share their experiences and to learn about the latest developments. This volume provides an excellent overview of the latest achievements and plans for the use of new parallel techniques in the fields of meteorology, climatology and oceanography.




Algorithms for Computer Algebra


Book Description

Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.




Computer Algebra in Quantum Field Theory


Book Description

The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.




Computer Algebra in Scientific Computing


Book Description

This book constitutes the refereed proceedings of the 22nd International Workshop on Computer Algebra in Scientific Computing, CASC 2020, held in Linz, Austria, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 34 full papers presented together with 2 invited talks were carefully reviewed and selected from 41 submissions. They deal with cutting-edge research in all major disciplines of computer algebra. The papers cover topics such as polynomial algebra, symbolic and symbolic-numerical computation, applications of symbolic computation for investigating and solving ordinary differential equations, applications of CAS in the investigation and solution of celestial mechanics problems, and in mechanics, physics, and robotics.




SymbolicC++:An Introduction to Computer Algebra using Object-Oriented Programming


Book Description

Symbolic C++: An Introduction to Computer Algebra Using Object-Oriented Programming provides a concise introduction to C++ and object-oriented programming, using a step-by-step construction of a new object-oriented designed computer algebra system - Symbolic C++. It shows how object-oriented programming can be used to implement a symbolic algebra system and how this can then be applied to different areas in mathematics and physics. This second revised edition:- * Explains the new powerful classes that have been added to Symbolic C++. * Includes the Standard Template Library. * Extends the Java section. * Contains useful classes in scientific computation. * Contains extended coverage of Maple, Mathematica, Reduce and MuPAD.




Computer Algebra


Book Description

This book still remains the best introduction to computer algebra, catering to both the interested beginner and the experienced pure mathematician and computer scientist. This updated Second Edition provides a comprehensive review, and contains excellent references to fundamental papers and worked examples. In addition to being a general text on the subject, the book includes an appendix describing the use of one particular algebra system-REDUCE.




Computer Algebra


Book Description

this gap. In sixteen survey articles the most important theoretical results, algorithms and software methods of computer algebra are covered, together with systematic references to literature. In addition, some new results are presented. Thus the volume should be a valuable source for obtaining a first impression of computer algebra, as well as for preparing a computer algebra course or for complementary reading. The preparation of some papers contained in this volume has been supported by grants from the Austrian "Fonds zur Forderung der wissenschaftlichen For schung" (Project No. 3877), the Austrian Ministry of Science and Research (Department 12, Dr. S. Hollinger), the United States National Science Foundation (Grant MCS-8009357) and the Deutsche Forschungsgemeinschaft (Lo-23 1-2). The work on the volume was greatly facilitated by the opportunity for the editors to stay as visitors at the Department of Computer and Information Sciences, University of Delaware, at the General Electric Company Research and Development Center, Schenectady, N. Y. , and at the Mathematical Sciences Department, Rensselaer Polytechnic Institute, Troy, N. Y. , respectively. Our thanks go to all these institutions. The patient and experienced guidance and collaboration of the Springer-Verlag Wien during all the stages of production are warmly appreciated. The editors of the Cooperative editor of Supplementum Computing B. Buchberger R. Albrecht G. Collins R. Loos Contents Loos, R. : Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 1 Buchberger, B. , Loos, R. : Algebraic Simplification . . . . . . . . . . 11 Neubiiser, J. : Computing with Groups and Their Character Tables. 45 Norman, A. C. : Integration in Finite Terms. . . . . . . . . . . . . .




Recent Books