Timeless Reality


Book Description

A professor of physics and astronomy studies a theory that time is reversible, and explains how physicists have generally been reluctant to accept the reversibility of time because of the implied causal paradoxes. Illustrations.




Fearful Symmetry


Book Description

An engaging exploration of beauty in physics, with a foreword by Nobel Prize–winning physicist Roger Penrose The concept of symmetry has widespread manifestations and many diverse applications—from architecture to mathematics to science. Yet, as twentieth-century physics has revealed, symmetry has a special, central role in nature, one that is occasionally and enigmatically violated. Fearful Symmetry brings the incredible discoveries of the juxtaposition of symmetry and asymmetry in contemporary physics within everyone's grasp. A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how contemporary theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, Fearful Symmetry describes the majestic sweep and accomplishments of twentieth-century physics—one of the greatest chapters in the intellectual history of humankind.




The Universe as Automaton


Book Description

This Brief is an essay at the interface of philosophy and complexity research, trying to inspire the reader with new ideas and new conceptual developments of cellular automata. Going beyond the numerical experiments of Steven Wolfram, it is argued that cellular automata must be considered complex dynamical systems in their own right, requiring appropriate analytical models in order to find precise answers and predictions in the universe of cellular automata. Indeed, eventually we have to ask whether cellular automata can be considered models of the real world and, conversely, whether there are limits to our modern approach of attributing the world, and the universe for that matter, essentially a digital reality.




Physics from Symmetry


Book Description

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.




The Second Kind of Impossible


Book Description

*Shortlisted for the 2019 Royal Society Insight Investment Science Book Prize* One of the most fascinating scientific detective stories of the last fifty years, an exciting quest for a new form of matter. “A riveting tale of derring-do” (Nature), this book reads like James Gleick’s Chaos combined with an Indiana Jones adventure. When leading Princeton physicist Paul Steinhardt began working in the 1980s, scientists thought they knew all the conceivable forms of matter. The Second Kind of Impossible is the story of Steinhardt’s thirty-five-year-long quest to challenge conventional wisdom. It begins with a curious geometric pattern that inspires two theoretical physicists to propose a radically new type of matter—one that raises the possibility of new materials with never before seen properties, but that violates laws set in stone for centuries. Steinhardt dubs this new form of matter “quasicrystal.” The rest of the scientific community calls it simply impossible. The Second Kind of Impossible captures Steinhardt’s scientific odyssey as it unfolds over decades, first to prove viability, and then to pursue his wildest conjecture—that nature made quasicrystals long before humans discovered them. Along the way, his team encounters clandestine collectors, corrupt scientists, secret diaries, international smugglers, and KGB agents. Their quest culminates in a daring expedition to a distant corner of the Earth, in pursuit of tiny fragments of a meteorite forged at the birth of the solar system. Steinhardt’s discoveries chart a new direction in science. They not only change our ideas about patterns and matter, but also reveal new truths about the processes that shaped our solar system. The underlying science is important, simple, and beautiful—and Steinhardt’s firsthand account is “packed with discovery, disappointment, exhilaration, and persistence...This book is a front-row seat to history as it is made” (Nature).




Symmetry: A Very Short Introduction


Book Description

In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Mirror Symmetry


Book Description

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.




Physics and Whitehead


Book Description

Featuring discussions and dialogue by prominent scientists and philosophers, this book explores the rich interface of contemporary physics and Whitehead-inspired process thought. The contributors share the conviction that quantum physics not only corroborates many of Whitehead's philosophical theses, but is also illuminated by them. Thus, though differing in perspective or emphasis, the contributions by Geoffrey Chew, David Finkelstein, Henry Stapp and other scientists conceptually dovetail with those of Philip Clayton, Jorge Nobo, Yutaka Tanaka and other process philosophers.




Symmetries in Physics


Book Description

This book brings together philosophical discussions of symmetry in physics, highlighting the main issues and controversies. It covers all the fundamental symmetries of modern physics, as well as discussing symmetry-breaking and general interpretational issues. For each topic, classic texts are followed by review articles and short commentaries.




Symmetry in Mathematics and Physics


Book Description

The articles in this volume mainly grew out of talks given at a Conference held at UCLA in January 2008, which honored V. S. Varadarajan on his 70th birthday. The main theme of the Conference was symmetry in mathematics and physics, areas of mathematics and mathematical physics in which Varadarajan has made significant contributions during the past 50 years. Very early in his career he also worked and made significant contributions in the areas of probability and the foundations of quantum mechanics. Topics covered by the articles in this volume are probability, quantum mechanics, symmetry (broadly interpreted in mathematics and physics), finite and infinite dimensional Lie groups and Lie algebras and their representations, super Lie groups and supergeometry (relatively new but active and important fields at the interface between mathematics and physics), and supersymmetry. The latter topic takes on a special importance since one of the first experiments at the Large Hadron Collider at CERN will be a test of whether supersymmetry exists in the world of elementary particles. A reprint of an exposition of supersymmetry by one of its founders, B. Zumino, appears in this volume.