Synchronization of Mechanical Systems


Book Description

The main goal of this book is to prove analytically and validate experimentally that synchronization in multi-composed mechanical systems can be achieved in the case of partial knowledge of the state vector of the systems, i.e. when only positions are measured. For this purpose, synchronization schemes based on interconnections between the systems, feedback controllers and observers are proposed. Because mechanical systems include a large variety of systems, and since it is impossible to address all of them, the book focuses on robot manipulators. Nonetheless the ideas developed here can be extended to other mechanical systems, such as mobile robots, motors and generators. Contents: Preliminaries; External Synchronization of Rigid Joint Robots; External Synchronization of Flexible Joint Robots; Mutual Synchronization of Rigid Joint Robots; An Experimental Case Study; Synchronization in Other Mechanical Systems. Readership: Students and researchers in mechanical engineering and control theory.




Synchronization Of Mechanical Systems


Book Description

The main goal of this book is to prove analytically and validate experimentally that synchronization in multi-composed mechanical systems can be achieved in the case of partial knowledge of the state vector of the systems, i.e. when only positions are measured. For this purpose, synchronization schemes based on interconnections between the systems, feedback controllers and observers are proposed.Because mechanical systems include a large variety of systems, and since it is impossible to address all of them, the book focuses on robot manipulators. Nonetheless the ideas developed here can be extended to other mechanical systems, such as mobile robots, motors and generators.




Parameter Identification and Monitoring of Mechanical Systems Under Nonlinear Vibration


Book Description

Development of new sensors and digital processors has provided opportunity for identification of nonlinear systems. Vibration measurements have become standard for predicting and monitoring machinery in industry. Parameter Identification and Monitoring of Mechanical Systems under Nonlinear Vibration focusses on methods for the identification of nonlinearities in mechanical systems, giving description and examples of practical application. Chapters cover nonlinear dynamics; nonlinear vibrations; signal processing; parameter identification; application of signal processing to mechanical systems; practical experience and industrial applications; and synchronization of nonlinear systems. - Covers the most recent advances in machinery monitoring - Describes the basis for nonlinear dynamics - Presents advantages of applying modern signal processing to mechanical systems







Dynamics And Control Of Hybrid Mechanical Systems


Book Description

The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and control, but also a number of experimental realizations. Special attention is given to synchronization — a universal phenomenon in nonlinear science that gained tremendous significance since its discovery by Huygens in the 17th century. Possible applications of the results introduced in the book include control of mobile robots, control of CD/DVD players, flexible manufacturing lines, and complex networks of interacting agents.The book is based on the material presented at a similarly entitled minisymposium at the 6th European Nonlinear Dynamics Conference held in St Petersburg in 2008. It is unique in that it contains results of several international and interdisciplinary collaborations in the field, and reflects state-of-the-art technological development in the area of hybrid mechanical systems at the forefront of the 21st century.




Ordinary Differential Equations and Mechanical Systems


Book Description

This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.




Synchronization


Book Description

This fascinating work is devoted to the fundamental phenomenon in physics – synchronization that occurs in coupled non-linear dissipative oscillators. Examples of such systems range from mechanical clocks to population dynamics, from the human heart to neural networks. The main purpose of this book is to demonstrate that the complexity of synchronous patterns of real oscillating systems can be described in the framework of the general approach, and the authors study this phenomenon as applied to oscillations of different types, such as those with periodic, chaotic, noisy and noise-induced nature.




Applied Methods and Techniques for Mechatronic Systems


Book Description

Applied Methods and Techniques for Mechatronic Systems brings together the relevant studies in mechatronic systems with the latest research from interdisciplinary theoretical studies, computational algorithm development and exemplary applications. Readers can easily tailor the techniques in this book to accommodate their ad hoc applications. The clear structure of each paper, background - motivation - quantitative development (equations) - case studies/illustration/tutorial (curve, table, etc.) is also helpful. It is mainly aimed at graduate students, professors and academic researchers in related fields, but it will also be helpful to engineers and scientists from industry. Lei Liu is a lecturer at Huazhong University of Science and Technology (HUST), China; Quanmin Zhu is a professor at University of the West of England, UK; Lei Cheng is an associate professor at Wuhan University of Science and Technology, China; Yongji Wang is a professor at HUST; Dongya Zhao is an associate professor at China University of Petroleum.







Synchronization


Book Description

The book describes synchronization phenomena using both classical results and more recent developments.