Synthesis and Characterization of Self-assembling Polymers Using Hydrogen Bonding Or Hydrophobic Effect


Book Description

This dissertation is mainly based on the works of synthesis and characterization of self-assembling polymers using hydrogen bonding or hydrophobic interactions. Firstly, N-alkyl urea peptoid oligomer was synthesized as backbone of supramolecular polymers through three step repetition cycles with high yield. One N-alkyl urea peptoid precursor was explored to simplify the synthetic process. 4 different functional groups were converted from one precursor. Then 2-ureido-4[1H]-pyrimidinone (UPy) group which is a quadruple hydrogen bonding system was incorporated to N-alkyl urea peptoid oligomers to generate supramolecules. With the experience of UPy unit, we further explored UPy containing monomer to make organogelators. Three different monomers with different Tg values were copolymerized using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Organogels were afforded in both chloroform and dichlorobenzene. Critical gelation concentration and mechanic properties of organogels were examined. Cooperating another novel monomer containing pyrene unit to the above copolymers, fluorescent organogels were achieved which were suitable for potential up-conversion applications. In addition to pyrene, anthracene is another molecule which shows great up-conversion property. A series of Poly[(9-anthrylmethyl methacrylate)-co-(methyl methacrylate)] (Poly(AnMMA-co-MMA)) with different AnMMA ratios were synthesized via RAFT polymerization, resulting in tunable inter-chromophore distances. These polymers can serve as emitters, with PtOEP as sensitizer, in triplet-triplet annihilation up-conversion (TTA-UC) systems. TTA-UC intensity of the Poly(AnMMA-co-MMA)/PtOEP mixtures displays interesting dependence on the AnMMA ratio in the polymer. Interactions between chromophores on the same polymer chain play the key role in affecting the TTA-UC intensity in these systems. It is critical to minimize intra-chain chromophore quenching in order to achieve high UC intensity. Hydrophobic effect was used to obtain a hybrid photosensitizer. By integrating amphiphilic block copolymer poly(N-isopropylacrylamide-b-styrene) (PNIPAAm-b-styrene) stabilized silver nanoparticles (Ag NPs) with hematoporphyrin (HP), HP was trapped by polystyrene block through hydrophobic effects. Hydrophilic block can increase the solubility of this photosensitizer in aqueous solution. This hybrid photosensitizer was demonstrated to enhance singlet oxygen production. Finally, a self-immolative polymer was made with a kinetically stable polymer backbone, whose chain end can respond to external stimulus by triggering a head-to-tail depolymerizaiton. Electrospining was used to fabricate nano-scale fibers which can be utilized in potential drug delivery system.




Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications


Book Description

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.




Covalent Organic Frameworks


Book Description

Rational synthesis of extended arrays of organic matter in bulk, solution, crystals, and thin films has always been a paramount goal of chemistry. The classical synthetic tools to obtain long-range regularity are, however, limited to noncovalent interactions, which usually yield structurally more random products. Hence, a combination of porosity and regularity in organic covalently bonded materials requires not only the design of molecular building blocks that allow for growth into a nonperturbed, regular geometry but also a condensation mechanism that progresses under reversible, thermodynamic, self-optimizing conditions. Covalent organic frameworks (COFs), a variety of 2D crystalline porous materials composed of light elements, resemble an sp2-carbon-based graphene sheet but have a different molecular skeleton formed by orderly linkage of building blocks to constitute a flat organic sheet. COFs have attracted considerable attention in the past decade because of their versatile applications in gas storage and separation, catalysis, sensing, drug delivery, and optoelectronic materials development. Compared to other porous materials, COFs allow for atomically precise control of their architectures by changing the structure of their building blocks, whereby the shapes and sizes of their pores can be well-tuned. Covalent Organic Frameworks is a compilation of different topics in COF research, from COF design and synthesis, crystallization, and structural linkages to the theory of gas sorption and various applications of COFs, such as heterogeneous catalysts, energy storage (e.g., semiconductors and batteries), and biomedicine. This handbook will appeal to anyone interested in nanotechnology and new materials of gas adsorption and storage, heterogeneous catalysts, electronic devices, and biomedical devices.




Conducting Polymers


Book Description

This book is a systematic survey of the knowledge accumulated in this field in the last thirty years. It includes material on the thermodynamic aspects of the polymers, the theory of the mechanism of charge transport processes, and the chemical and physical properties of these compounds. Also covered are the techniques of characterization, the electrochemical methods of synthesis, and the application of these systems. Inzelt’s book is a must-read for electrochemists and others.




Solution-Processable Components for Organic Electronic Devices


Book Description

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.




Microwave-assisted Polymer Synthesis


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students




Homogeneous Photocatalysis


Book Description

Photocatalysis and related processes occupy a strategic position for the future of photochemistry. This volume provides an introduction to basic concepts and explains how applications work at the molecular level.




Clay-Polymer Nanocomposites


Book Description

Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more