Carbohydrate Antigens


Book Description

Developed from a symposium at the Fourth Chemical Congress of North America (202nd National Meeting of the ACS) in New York City, August 1991, chapter-papers present research on topics including how proteins recognize and bind oligosaccharides, synthesis and immunological properties of glycopeptide T-cell determinants, Vibrio cholerae polysaccharide studies, and purification of oligosaccharide antigens by weak affinity chromatography. Annotation copyright by Book News, Inc., Portland, OR




Carbohydrate-based Vaccines


Book Description

This book is the first of its kind entirely dedicated to carbohydrate vaccines written by renowned scientists with expertise in carbohydrate chemistry and immunochemistry. It covers the synthesis of carbohydrate antigens related to bacteria and parasites such as: Heamophilus influenza, Streptococcus pnemoniae, Shigella flexneri, Candida albicans, Mycobacterium tuberculosis, and Chlamydia. The first three chapters are of wide interest as they cover fundamental concerns in new vaccine developments. The first one presents the immune system and how carbohydrate antigens are processed before protective antibodies are produced. It also illustrates antigen presentation in the context of major histocompatibility complexes (MHCs). The second chapter describes regulatory issues when carbohydrate vaccines are involved while the third one discuss several techniques used in conjugation chemistry and the implication of certain chemical linkages that may induce unexpected anti-linker antibodies. This section will be particularly appealing for those involved in drug-conjugate design, pro-drug developments, and drug vectorization. The book concludes with one chapter that illustrates the principle through which peptide antigens can functionally mimic carbohydrate epitopes, thus, unraveling the potential for peptide surrogates as replacement for complex carbohydrate structures. This book is unique in that it covers all aspects related to carbohydrate vaccines including the success story with the first semi-synthetic bacterial polysaccharide vaccine against Heamophilus influenza type b responsible for pneumonia and meningitis, liable for more than 600,000 infant deaths worldwide in developing countries. The book also presents regulatory issues and will thus be vital for government agencies approving candidate vaccines. It widely covers synthetic methodologies for the attachment of carbohydrate antigens to peptides and immunogenic protein carriers. Vaccines against bacterial antigens, cancer, and parasites are also discussed by worldwide experts in this field in details. No other book contains such a wide panel of different expertise. It will also be useful to students and researchers involved with the immunology of forreings antigens and how the under appreciated carbohydrate antigens are processed by the immune system.




Peptide Antibodies


Book Description

This extensive volume covers basic and advanced aspects of peptide antibody production, characterization and uses. Although peptide antibodies have been available for many years, they continue to be a field of active research and method development. For example, peptide antibodies which are dependent on specific posttranslational modifications are of great interest, such as phosphorylation, citrullination and others, while different forms of recombinant peptide antibodies are gaining interest, notably nanobodies, single chain antibodies, TCR-like antibodies, among others. Within this volume, those areas are covered, as well as several technical and scientific advances: solid phase peptide synthesis, peptide carrier conjugation and immunization, genomics, transcriptomics, proteomics and elucidation of the molecular basis of antigen presentation and recognition by dendritic cells, macrophages, B cells and T cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Peptide Antibodies: Methods and Protocols serves as an ideal reference for researchers exploring this vital and expansive area of study.




Biologically-responsive Hybrid Biomaterials


Book Description

Conjugation of synthetic materials with cell-responsive biologically-active molecules, in addition to providing structural support and release of biomolecules in the regenerating region, can provide the signaling factors required to initiate the cascade of cell migration, adhesion, differentiation, maturation, growth factor modulation, maintenance of matrix integrity, and tissue morphogenesis. Nanoparticles conjugated with ligands that preferentially interact with cell surface receptors in the tumor environment have the potential to drastically improve bioavailability, selectivity and residence time of the chemotherapeutic agent in the tumor microenvironment, while limiting their peripheral toxicity. Multivalent presentation of tumor-associated antigens on a targeted delivery system containing T and B cell epitopes can result in strong, long-lasting, self-adjuvant immunity against cancer and other diseases in vaccination. These examples demonstrate that cell-responsive conjugate biomaterials have profoundly impacted the medical field. This book is divided into three sections. In the first section, synthesis and characterization, conformation, structure-activity, self-assembly, and host response of conjugate hybrid biomaterials are covered. The second section is dedicated to the applications of conjugate biomaterials in drug delivery and vaccination while the last section is devoted to tissue engineering applications including cell adhesion, control of the stem cell niche, cartilage regeneration, neural and vascular tissue engineering, and dynamic cell culture systems for functionalized biomaterials. There is no doubt that biologically-responsive conjugate biomaterials play a key role in the design of biologics and medical devices, and this pioneering reference book provides a comprehensive review on synthesis, characterization, structure-activity, 3D assembly/fabrication, host response and the emerging applications of conjugate hybrid biomaterials.




Immunopotentiators in Modern Vaccines


Book Description

Immunopotentiators in Modern Vaccines provides an in-depth insight and overview of a number of most promising immunopotentiators in modern vaccines. In contrast to existing books on the subject it provides recent data on the critical mechanisms governing the activity of vaccine adjuvants and delivery systems. Knowledge of immunological pathways and scenarios of the cells and molecules involved is described and depicted in comprehensive illustrations. - Contributions from leading international authorities in the field - Well-illustrated, informative figures present the interactions between immunopotentiators and the host immune system - Each chapter lists advantages and potential hurdles for achieving a practical application for the specific immunopentiator




Carbohydrate Recognition


Book Description

This book contains contributions from interdisciplinary scientists to collectively address the issue of targeting carbohydrate recognition for the development of novel therapeutic and diagnostic agents. The book covers (1) biological problems involving carbohydrate recognition, (2) structural factors mediating carbohydrate recognition, (3) design and synthesis of lectin mimics that recognize carbohydrate ligands with high specificity and affinity, and (4) modulation of biological and pathological processes through carbohydrate recognition.




Innovations for Next-Generation Antibody-Drug Conjugates


Book Description

Antibody-drug conjugates (ADCs) stand at the verge of a transformation. Scores of clinical programs have yielded only a few regulatory approvals, but a wave of technological innovation now empowers us to overcome past technical challenges. This volume focuses on the next generation of ADCs and the innovations that will enable them. The book inspires the future by integrating the field’s history with novel strategies and cutting-edge technologies. While the book primarily addresses ADCs for solid tumors, the last chapter explores the emerging interest in using ADCs to treat other diseases. The therapeutic rationale of ADCs is strong: to direct small molecules to the desired site of action (and away from normal tissues) by conjugation to antibodies or other targeting moieties. However, the combination of small and large molecules imposes deep complexity to lead optimization, pharmacokinetics, toxicology, analytics and manufacturing. The field has made significant advances in all of these areas by improving target selection, ADC design, manufacturing methods and clinical strategies. These innovations will inspire and educate scientists who are designing next-generation ADCs with the potential to transform the lives of patients.







MCQs in Microbiology


Book Description




The World of Peptides


Book Description

Almost two centuries ago proteins were recognized as the primary materials (proteios = primary) oflife, but the significance and wide role of peptides (from pepsis = digestion) in practically all life pro cesses has only become apparent in the last few decades. Biologi cally active peptides are now being discovered at rapid intervals in the brain and in other organs including the heart, in the skin of amphibians and many other tissues. Peptides and peptide-like compounds are found among toxins and antibiotics. It is unlikely that this process, an almost explosive broadening of the field, will come to a sudden halt. By now it is obvious that Nature has used the combination of a small to moderate number of amino acids to generate a great variety of agonists with specific and often highly sophisticated functions. Thus, peptide chemistry must be regarded as a discipline in its own right, a major branch of biochemistry, fairly separate from the chemistry of proteins. Because of the important role played by synthesis both in the study and in the practical preparation of peptides, their area can be considered as belonging to bio-organic chemistry as well. The already overwhelming and still increasing body of know ledge renders an account of the history of peptide chemistry more and more difficult. It appears therefore timely to look back, to take stock and to recall the important stages in the development of a new discipline.