Transition Metals in Supramolecular Chemistry


Book Description

Since the pioneering publications on coordination chemistry by Lehn and Pedersen in the late 1960s, coupled with the more orthodox interest from the transition metal chemists on template reactions (Busch, 1964), the field of supramolecular chemistry has grown at an astonishing rate. The use of transition metals as essential constituents of multi-component assemblies has been especially sharp in recent years, since the metals are prone to quick and reversible redox changes, and there is a wide variety of metal--ligand interactions. Such properties make supramolecular complexes of transition metal ions suitable candidates for exploration as light--energy converters and signal processors. Transition Metals in Supramolecular Chemistry focuses on the following main topics: (1) metal controlled organization of novel molecular assemblies and shapes; (2) design of molecular switches and devices operating through metal centres; (3) supramolecular catalysts that mimic metalloenzymes; (4) metal-containing sensory reagents and supramolecular recognition; and (5) molecular materials that display powerful electronic, optoelectronic and magnetic properties.













Transition Metals in the Synthesis of Complex Organic Molecules


Book Description

This second edition offers easy access to the field of organotransition metal chemistry. The book covers the basics of transition metal chemistry, giving a practical introduction to organotransition reaction mechanisms.










Organometallic Chemistry


Book Description

A series of critical reviews and perspectives focussing on specific aspects of organometallic chemistry interfacing with other fields of study are provided. For this volume, the critical reviews cover topics such as the activation of "inert" carbon-hydrogen bonds, ligand design and organometallic radical species. For example, Charlie O'Hara discusses how mixed-metal compounds may perform the highly selective activation of C-H bonds and, in particular, how synergic relationships between various metals are crucial to this approach. The chemistry of a remarkable series of air-stable chiral primary phosphine ligands is discussed in some depth by Rachel Hiney, Arne Ficks, Helge M3ller-Bunz, Declan Gilheany and Lee Higham. This article focuses on the preparation of these ligands and also how they may be applied in various catalytic applications. Bas De Bruin reports on how ligand radical reactivity can be employed in synthetic organometallic chemistry and catalysis to achieve selectivity in radical-type transformations. As well as highlighting ligand-centered radical transformations in open-shell transition metals, an overview of the catalytic mechanism of Co(II)-catalysed olefin cyclopropanation is given, showing that enzyme-like cooperative metal-ligand-radical reactivity is no longer limited to real enzymes. Valuable and informative comprehensive reviews in the field of organometallic chemistry are also covered in this volume. For example, organolithium and organocuprate chemistry are reviewed by Joanna Haywood and Andrew Wheatley; aspects in Group 2 (Be-Ba) and Group 12 (Zn-Hg) compounds by Robert Less, Rebecca Melen and Dominic Wright; metal clusters by Mark Humphrey and Marie Cifuentes; and recent developments in the chemistry of the elements of Group 14 - focusing on low-coordination number compounds by Richard Layfield. This volume therefore covers many synthetic and applied aspects of modern organometallic chemistry which ought to be of interest to inorganic, organic and applied catalysis fields.