Lipid A in Cancer Therapy


Book Description

Cancer remains a major challenge for modern society. Not only does cancer rank among the first three causes of mortality in most population groups but also the therapeutic options available for most tumor types are limited. The existing ones have limited efficacy, lack specificity and their administration carry major side effects. Hence the urgent need for novel cancer therapies. One of the most promising avenues in research is the use of specific immunotherapy. The notion that the immune system may have important anti-tumor effects has been around for more than a century now. Every major progress in microbiology and immunology has been immediately followed by attempts to apply the new knowledge to the treatment of cancer. Progress has reached a point where it is well established that most cancer patients mount specific T cell responses against their tumors. The molecular identity of the antigens recognized by anti-tumor T cells has been elucidated and several hundreds of tumor-derived antigenic peptides have been discovered. Upon recognition of such peptides presented by self MHC molecules, both CD8 and CD4 T cells are activated, expand to high numbers and differentiate into effective anti-tumor agents. CD8 T cells directly destroy tumor cells and can cause even large tumors to completely regress in experimental mouse models. These observations have spurred intense research activity aimed at designing and testing cancer vaccines. Over 100 years ago Coley successfully used intratumoral injection of killed bacteria to treat sarcomas. The important anti-tumor effects observed in a fraction of these patients fueled major research efforts. These led to major discoveries in the 80s and the 90s. It turns out that bacterial lipopolysaccharides stimulate the production of massive amounts of a cytokine still known today as tumor necrosis factor (TNF-a). They do so by engagement of a rather complex set of interactions culminating in the ligation of a Toll-like receptor, TLR -4. Ensuing signaling through this receptor initiates potent innate immune responses. Unfortunately the clinical use of both TNF-a and LPS can not be generalized due to their very narrow therapeutic margin. Importantly, synthetic Lipid A analogs have been identified that retain useful bioactivity and yet possess only mild toxicity. The relatively large body of information accumulated thus far on the molecular and cellular interactions set in motion by administration of LPS as well as by the synthetic lipid A analogs allow to place this family of bacterially-derived molecules at the crossroads between innate and adaptive immunity. By virtue of this key position, the therapeutic applications being pursued aim at using these compounds either as direct anti-tumor agents or as vaccine adjuvants. The clinical experience acquired so far on these two avenues is asymmetric. Few clinical trials using Lipid A analogs as single anti-cancer agents involving less than 100 patients with advanced cancer have been reported. In contrast, lipid A has been tested in over 300,000 individuals in various vaccines trials, including therapeutic cancer vaccines. Clearly most of the work needed to develop lipid A as effective anti-cancer agents and/or as vaccine adjuvant lies ahead in the near future. This book is a timely contribution and provides a much needed up-to-date overview of the chemical, biological and physiological aspects of lipid A. It should be a beacon to all those involved in this field of research.




Carbohydrate Antigens


Book Description

Developed from a symposium at the Fourth Chemical Congress of North America (202nd National Meeting of the ACS) in New York City, August 1991, chapter-papers present research on topics including how proteins recognize and bind oligosaccharides, synthesis and immunological properties of glycopeptide T-cell determinants, Vibrio cholerae polysaccharide studies, and purification of oligosaccharide antigens by weak affinity chromatography. Annotation copyright by Book News, Inc., Portland, OR




Comparative Oncology


Book Description




Carbohydrate-based Vaccines


Book Description

This book is the first of its kind entirely dedicated to carbohydrate vaccines written by renowned scientists with expertise in carbohydrate chemistry and immunochemistry. It covers the synthesis of carbohydrate antigens related to bacteria and parasites such as: Heamophilus influenza, Streptococcus pnemoniae, Shigella flexneri, Candida albicans, Mycobacterium tuberculosis, and Chlamydia. The first three chapters are of wide interest as they cover fundamental concerns in new vaccine developments. The first one presents the immune system and how carbohydrate antigens are processed before protective antibodies are produced. It also illustrates antigen presentation in the context of major histocompatibility complexes (MHCs). The second chapter describes regulatory issues when carbohydrate vaccines are involved while the third one discuss several techniques used in conjugation chemistry and the implication of certain chemical linkages that may induce unexpected anti-linker antibodies. This section will be particularly appealing for those involved in drug-conjugate design, pro-drug developments, and drug vectorization. The book concludes with one chapter that illustrates the principle through which peptide antigens can functionally mimic carbohydrate epitopes, thus, unraveling the potential for peptide surrogates as replacement for complex carbohydrate structures. This book is unique in that it covers all aspects related to carbohydrate vaccines including the success story with the first semi-synthetic bacterial polysaccharide vaccine against Heamophilus influenza type b responsible for pneumonia and meningitis, liable for more than 600,000 infant deaths worldwide in developing countries. The book also presents regulatory issues and will thus be vital for government agencies approving candidate vaccines. It widely covers synthetic methodologies for the attachment of carbohydrate antigens to peptides and immunogenic protein carriers. Vaccines against bacterial antigens, cancer, and parasites are also discussed by worldwide experts in this field in details. No other book contains such a wide panel of different expertise. It will also be useful to students and researchers involved with the immunology of forreings antigens and how the under appreciated carbohydrate antigens are processed by the immune system.




Anticancer Agents


Book Description

This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.




Cancer Vaccines and Immunotherapy


Book Description

Rapid progress in the definition of tumor antigens, and improved immunization methods, bring effective cancer vaccines within reach. In this wide-ranging survey, leading clinicians and scientists review therapeutic cancer vaccine strategies against a variety of diseases and molecular targets. Intended for an interdisciplinary readership, their contributions cover the rationale, development, and implementation of vaccines in human cancer treatment, with specific reference to cancer of the cervix, breast, colon, bladder, and prostate, and to melanoma and lymphoma. They review target identification, delivery vectors and clinical trial design. The book begins and ends with lucid overviews from the editors, that discuss the most recent developments.




Vaccines for Cancer Immunotherapy


Book Description

Therapeutic cancer vaccines represent a type of active cancer immunotherapy. Clinicians, scientists, and researchers working on cancer treatment require evidence-based and up-to-date resources relating to therapeutic cancer vaccines. Vaccines for Cancer Immunotherapy provides a reference for cancer treatment for clinicians and presents a well-organized resource for determining high-potential research areas. The book considers that this promising modality can be made more feasible as a treatment for cancer. Chapters cover cancer immunology, general approaches to cancer immunotherapy, vaccines, tumor antigens, the strategy of allogeneic and autologous cancer vaccines, personalized vaccines, whole-tumor antigen vaccines, protein and peptide vaccines, dendritic cell vaccines, genetic vaccines, candidate cancers for vaccination, obstacles to developing therapeutic cancer vaccines, combination therapy, future perspectives and concluding remarks on therapeutic cancer vaccines. - Introduces the feasible immunotherapeutic vaccines for patients with different types of cancer - Presents the status of past and current vaccines for cancer treatment - Considers advantages and disadvantages of different therapeutic cancer vaccines - Looks at the combination of vaccines and other modalities, including immunotherapeutic and conventional methods - Analyzes obstacles to development of therapeutic cancer vaccines - Gives a view on future perspectives in the application of therapeutic cancer vaccines




Nanopharmaceuticals: Principles and Applications Vol. 3


Book Description

This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.




Toll-Like Receptors (TLRs) and Innate Immunity


Book Description

Overall recent research on TLRs has led to tremendous increase in our understanding of early steps in pathogen recognition and will presumably lead to potent TLR targeting therapeutics in the future. This book reviews and highlights our recent understanding on the function and ligands of TLRs as well as their role in autoimmunity, dendritic cell activation and target structures for therapeutic intervention.




Medicinal Chemistry of Anticancer Drugs


Book Description

Medicinal Chemistry of Anticancer Drugs, Second Edition, provides an updated treatment from the point of view of medicinal chemistry and drug design, focusing on the mechanism of action of antitumor drugs from the molecular level, and on the relationship between chemical structure and chemical and biochemical reactivity of antitumor agents. Antitumor chemotherapy is a very active field of research, and a huge amount of information on the topic is generated every year. Cytotoxic chemotherapy is gradually being supplemented by a new generation of drugs that recognize specific targets on the surface or inside cancer cells, and resistance to antitumor drugs continues to be investigated. While these therapies are in their infancy, they hold promise of more effective therapies with fewer side effects. Although many books are available that deal with clinical aspects of cancer chemotherapy, this book provides a sorely needed update from the point of view of medicinal chemistry and drug design. - Presents information in a clear and concise way using a large number of figures - Historical background provides insights on how the process of drug discovery in the anticancer field has evolved - Extensive references to primary literature