System Reliability Toolkit


Book Description




Applied Reliability Engineering


Book Description













Site Reliability Engineering


Book Description

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use




The DevOps 2. 0 Toolkit


Book Description

Automating the Continuous Deployment Pipeline with Containerized MicroservicesAbout This Book* First principles of devops, Ansible, Docker, Kubernetes, microservices* Architect your software in a better and more efficient way with microservices packed as immutable containers* Practical guide describing an extremely modern and advanced devops toolchain that can be improved continuouslyWho This Book Is ForIf you are an intermediate-level developer who wants to master the whole microservices development and deployment lifecycle using some of the latest and greatest practices and tools, this is the book for you. Familiarity with the basics of Devops and Continuous Deployment will be useful.What You Will Learn * Get to grips with the fundamentals of Devops* Architect efficient software in a better and more efficient way with the help of microservices* Use Docker, Kubernetes, Ansible, Ubuntu, Docker Swarm and more* Implement fast, reliable and continuous deployments with zero-downtime and ability to roll-back* Learn about centralized logging and monitoring of your cluster* Design self-healing systems capable of recovery from both hardware and software failuresIn DetailBuilding a complete modern devops toolchain requires not only the whole microservices development and a complete deployment lifecycle, but also the latest and greatest practices and tools. Victor Farcic argues from first principles how to build a devops toolchain. This book shows you how to chain together Docker, Kubernetes, Ansible, Ubuntu, and other tools to build the complete devops toolkit.Style and approach This book follows a unique, hands-on approach familiarizing you to the Devops 2.0 toolkit in a very practical manner. Although there will be a lot of theory, you won't be able to complete this book by reading it in a metro on a way to work. You'll need to be in front of your computer and get your hands dirty.




Photovoltaic (PV) System Delivery as Reliable Energy Infrastructure


Book Description

PHOTOVOLTAIC (PV) SYSTEM DELIVERY AS RELIABLE ENERGY INFRASTRUCTURE A practical guide to improving photovoltaic power plant lifecycle performance and output Photovoltaic (PV) System Delivery as Reliable Energy Infrastructure introduces a Preemptive Analytical Maintenance (PAM) for photovoltaic systems engineering, and the RepoweringTM planning approach, as a structured integrated system delivery process. A team of veteran photovoltaics professionals delivers a robust discussion of the lessons learned from mature industries—including PV, aerospace, utilities, rail, marine, and automotive—as applied to the photovoltaic industry. The book offers real-world “technical and fiscal” examples of the impact of photovoltaics to all stakeholders during the concept, specification, operations, maintenance, and RepoweringTM phases. In each chapter, readers will learn to develop RAMS specifications, reliability data collection, and tasks while becoming familiar with the inherent benefits of how these affect the cost of design and development, maintenance, spares, and systems operation. The authors also explain when and how to consider and implement RepoweringTM, plant upgrades and the considerations from concept through retirement and disposal of the plant. Readers will also find: A thorough introduction to Preemptive Analytical Maintenance (PAM), including systems engineering, lifecycle planning, risk management, risk assessment, risk reduction, as compared to the historic utility models, An in-depth treatment of the modern photovoltaic industry, including economic factors and the present endlessly evolving state of technology, Constructive discussions and application of systems engineering, including RAMS and System Engineering practices and solutions, Extensive explorations and application of data collection, curation, and analysis for PV systems, including advanced sensor technologies. Perfect for all new through to experienced photovoltaic design and specification engineers, photovoltaic plant owners, operators, PV asset managers and all interested stakeholders. Photovoltaic (PV) System Delivery as Reliable Energy Infrastructure will also earn a place in the libraries of utilities, engineering, procurements, construction professionals and students.




Risk, Reliability and Safety: Innovating Theory and Practice


Book Description

The safe and reliable performance of many systems with which we interact daily has been achieved through the analysis and management of risk. From complex infrastructures to consumer durables, from engineering systems and technologies used in transportation, health, energy, chemical, oil, gas, aerospace, maritime, defence and other sectors, the management of risk during design, manufacture, operation and decommissioning is vital. Methods and models to support risk-informed decision-making are well established but are continually challenged by technology innovations, increasing interdependencies, and changes in societal expectations. Risk, Reliability and Safety contains papers describing innovations in theory and practice contributed to the scientific programme of the European Safety and Reliability conference (ESREL 2016), held at the University of Strathclyde in Glasgow, Scotland (25—29 September 2016). Authors include scientists, academics, practitioners, regulators and other key individuals with expertise and experience relevant to specific areas. Papers include domain specific applications as well as general modelling methods. Papers cover evaluation of contemporary solutions, exploration of future challenges, and exposition of concepts, methods and processes. Topics include human factors, occupational health and safety, dynamic and systems reliability modelling, maintenance optimisation, uncertainty analysis, resilience assessment, risk and crisis management.




Reliability Engineering


Book Description

This book shows how to build in and assess reliability, availability, maintainability, and safety (RAMS) of components, equipment, and systems. It presents the state of the art of reliability (RAMS) engineering, in theory & practice, and is based on over 30 years author's experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The book structure allows rapid access to practical results. Methods & tools are given in a way that they can be tailored to cover different RAMS requirement levels. Thanks to Appendices A6 - A8 the book is mathematically self-contained, and can be used as a textbook or as a desktop reference with a large number of tables (60), figures (210), and examples / exercises^ 10,000 per year since 2013) were the motivation for this final edition, the 13th since 1985, including German editions. Extended and carefully reviewed to improve accuracy, it represents the continuous improvement effort to satisfy reader's needs and confidence. New are an introduction to risk management with structurally new models based on semi-Markov processes & to the concept of mean time to accident, reliability & availability of a k-out-of-n redundancy with arbitrary repair rate for n - k=2, 10 new homework problems, and refinements, in particular, on multiple failure mechanisms, approximate expressions, incomplete coverage, data analysis, and comments on ë, MTBF, MTTF, MTTR, R, PA.