Mathematical Systems Theory in Biology, Communications, Computation and Finance


Book Description

This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.




Control Theory and Systems Biology


Book Description

A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.




Philosophy of Systems Biology


Book Description

The emergence of systems biology raises many fascinating questions: What does it mean to take a systems approach to problems in biology? To what extent is the use of mathematical and computational modelling changing the life sciences? How does the availability of big data influence research practices? What are the major challenges for biomedical research in the years to come? This book addresses such questions of relevance not only to philosophers and biologists but also to readers interested in the broader implications of systems biology for science and society. The book features reflections and original work by experts from across the disciplines including systems biologists, philosophers, and interdisciplinary scholars investigating the social and educational aspects of systems biology. In response to the same set of questions, the experts develop and defend their personal perspectives on the distinctive character of systems biology and the challenges that lie ahead. Readers are invited to engage with different views on the questions addressed, and may explore numerous themes relating to the philosophy of systems biology. This edited work will appeal to scholars and all levels, from undergraduates to researchers, and to those interested in a variety of scholarly approaches such as systems biology, mathematical and computational modelling, cell and molecular biology, genomics, systems theory, and of course, philosophy of biology.




Systems Theory


Book Description

Systems Theory is a transdisciplinary field that involves complex combinations of different research fields with the purpose to explain the observed natural phenomena in the world around us. This field results in the appearance of the General System Theory. The aim of the present book is to present some of what is being done, in the 21st century, in different fields that comprise the Systems Theory. In the several chapters of this book developments of this theory are presented with the aim to solve different problems of systems. Different areas are covered, from biology and psychology to electronics, information sciences and management. The authors present their research in the study of the synthetic and systems biology, systems theory of bipolar disorder, unifying principles of science through physical activities, control of linear and non-linear systems, class of superquadratic Hamiltonian systems, systems with propagation, wireless sensor networks, information systems, and service operations management. This book is a tool composed by several results in the systems theory of several research fields with important application in the resolution of the problem of understanding our world.




Systems Biology


Book Description

With extraordinary clarity,the Systems Biology: Principles, Methods, and Concepts focuses on the technical practical aspects of modeling complex or organic general systems. It also provides in-depth coverage of modeling biochemical, thermodynamic, engineering, and ecological systems. Among other methods and concepts based in logic, computer




Life: An Introduction to Complex Systems Biology


Book Description

This book examines life not from the reductionist point of view, but rather asks the questions: what are the universal properties of living systems, and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation is relatively non-technical to appeal to a broad spectrum of students and researchers.




Systems Biology of Cell Signaling


Book Description

How can we understand the complexity of genes, RNAs, and proteins and the associated regulatory networks? One approach is to look for recurring types of dynamical behavior. Mathematical models prove to be useful, especially models coming from theories of biochemical reactions such as ordinary differential equation models. Clever, careful experiments test these models and their basis in specific theories. This textbook aims to provide advanced students with the tools and insights needed to carry out studies of signal transduction drawing on modeling, theory, and experimentation. Early chapters summarize the basic building blocks of signaling systems: binding/dissociation, synthesis/destruction, and activation/inactivation. Subsequent chapters introduce various basic circuit devices: amplifiers, stabilizers, pulse generators, switches, stochastic spike generators, and oscillators. All chapters consistently use approaches and concepts from chemical kinetics and nonlinear dynamics, including rate-balance analysis, phase plane analysis, nullclines, linear stability analysis, stable nodes, saddles, unstable nodes, stable and unstable spirals, and bifurcations. This textbook seeks to provide quantitatively inclined biologists and biologically inclined physicists with the tools and insights needed to apply modeling and theory to interesting biological processes. Key Features: Full-color illustration program with diagrams to help illuminate the concepts Enables the reader to apply modeling and theory to the biological processes Further Reading for each chapter High-quality figures available for instructors to download




Foundations of Complex-system Theories


Book Description

Analyzes approaches to the study of complexity in the physical, biological, and social sciences.




Cycles of Contingency


Book Description

The nature/nurture debate is not dead. Dichotomous views of development still underlie many fundamental debates in the biological and social sciences. Developmental systems theory (DST) offers a new conceptual framework with which to resolve such debates. DST views ontogeny as contingent cycles of interaction among a varied set of developmental resources, no one of which controls the process. These factors include DNA, cellular and organismic structure, and social and ecological interactions. DST has excited interest from a wide range of researchers, from molecular biologists to anthropologists, because of its ability to integrate evolutionary theory and other disciplines without falling into traditional oppositions.The book provides historical background to DST, recent theoretical findings on the mechanisms of heredity, applications of the DST framework to behavioral development, implications of DST for the philosophy of biology, and critical reactions to DST.