Teaching Mathematics to Middle School Students with Learning Difficulties


Book Description

A highly practical resource for special educators and classroom teachers, this book provides specific instructional guidance illustrated with vignettes, examples, and sample lesson plans. Every chapter is grounded in research and addresses the nuts and bolts of teaching math to students who are not adequately prepared for the challenging middle school curriculum. Presented are a range of methods for helping struggling learners build their understanding of foundational concepts, master basic skills, and develop self-directed problem-solving strategies. While focusing on classroom instruction, the book also includes guidelines for developing high-quality middle school mathematics programs and evaluating their effectiveness.




Teaching Secondary and Middle School Mathematics


Book Description

Teaching Secondary and Middle School Mathematics combines the latest developments in research, standards, and technology with a vibrant writing style to help teachers prepare for the excitement and challenges of teaching secondary and middle school mathematics today. In the fully revised fifth edition, scholar and mathematics educator Daniel Brahier invites teachers to investigate the nature of the mathematics curriculum and reflect on research-based "best practices" as they define and sharpen their own personal teaching styles. The fifth edition has been updated and expanded with a particular emphasis on the continued impact of the Common Core State Standards for Mathematics and NCTM’s just-released Principles to Actions, as well as increased attention to teaching with technology, classroom management, and differentiated instruction. Features include: A full new Chapter 7 on selection and use of specific tools and technology combined with "Spotlight on Technology" features throughout clearly illustrate the practical aspects of how technology can be used for teaching or professional development. Foundational Chapters 1 and 2 on the practices and principles of mathematics education have been revised to build directly on Common Core State Standards for Mathematics and Principles to Actions, with additional references to both documents throughout all chapters. A new Chapter 4 focuses on the use of standards in writing objectives and organizing lesson plan resources while an updated Chapter 5 details each step of the lesson planning process. A fully revised Chapter 12 provides new information on teaching diverse populations and outlines specific details and suggestions for classroom management for mathematics teachers. Classroom Dialogues" features draws on the author’s 35-year experience as an educator to present real-world teacher-student conversations about specific mathematical problems or ideas "How Would You React?" features prepares future teachers for real-life scenarios by engaging them in common classroom situations and offering tried-and-true solutions. With more than 60 practical, classroom-tested teaching ideas, sample lesson and activities, Teaching Secondary and Middle School Mathematics combines the best of theory and practice to provide clear descriptions of what it takes to be an effective teacher of mathematics.




Principles to Actions


Book Description

This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.




Teaching Mathematics in Secondary and Middle School


Book Description

For senior-level and graduate courses in Methods of Teaching Mathematics for Secondary and Middle School Teachers. Focused on all the complex aspects of teaching mathematics in today's classroom and the most current NCTM recommendations and standards this text shows students how to creatively incorporate the Standards into their teaching along with inquiry instructional strategies (for leading pupils to do meaningful mathematics) and direct strategies (for developing mathematical skills). Interactive in approach, it includes an abundance of illustrative examples, numerous cases, one expansive case study that follows a mathematics teacher through his first year in the profession, cooperative learning activities, field-based activities, and transitional activities.




Understanding Middle School Math


Book Description

Imagine handling students state-by-state data on the number of gallons of soft drinks sold per person in one year. Imagine using it to lead a vibrant problem-solving session in which students energetically pose and answer mathematical questions: Why does it say sold instead of consumed? What is a soft drink? Is it the same as a soda? Who would collect this kind of data? Why would they collect it? How was gallons per person calculated? What was the total amount of soda sold in our state? How many 12-ounce cans is that? 20-ounce bottles? How many of each per person? Understanding Middle School Math gathers 50 cool problems like this that lead to deep thinking. Problems such as the Renovation Problem, in which students uncover ideas about how perimeter, area, length, and cost affect a construction project. Or Chocolate Algebra, where they discover linear relationships among the pocket money available to buy two differently priced chocolate candies. Arthur Hyde combines the latest research and decades of classroom experience to braid language, cognition, and math. His approach can help any student, including underprepared ones, with the rigors of math in middle school and beyond. He has created and adapted problems that strongly connect math to the real world, to students lives, and to prior knowledge. Problems that scaffold content and processes, and give students multiple entry points into learning. Every problem has been extensively field tested and refined by classroom teachers. And for each cool problem practicing middle school teachers describe how they used it to differentiate over a wide range of students and extend learning. For fantastic problems your students won't soon forget and teaching solutions that are exciting, substantial, and transformative, turn to Art Hyde. Read and use Understanding Middle School Math and pass your love of math on as you meet your classroom goals.




Visible Learning for Mathematics, Grades K-12


Book Description

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.




Teaching Mathematics in the Visible Learning Classroom, Grades 6-8


Book Description

Select the right task, at the right time, for the right phase of learning It could happen in the morning during homework review. Or perhaps it happens when listening to students as they struggle through a challenging problem. Or maybe even after class, when planning a lesson. At some point, the question arises: How do I influence students′ learning—what’s going to generate that light bulb "aha" moment of understanding? In this sequel to the megawatt best seller Visible Learning for Mathematics, John Almarode, Douglas Fisher, Nancy Frey, John Hattie, and Kateri Thunder help you answer that question by showing how Visible Learning strategies look in action in the mathematics classroom. Walk in the shoes of middle school teachers as they engage in the 200 micro-decisions-per-minute needed to balance the strategies, tasks, and assessments seminal to high-impact mathematics instruction. Using grade-leveled examples and a decision-making matrix, you’ll learn to Articulate clear learning intentions and success criteria at surface, deep, and transfer levels Employ evidence to guide students along the path of becoming metacognitive and self-directed mathematics achievers Use formative assessments to track what students understand, what they don’t, and why Select the right task for the conceptual, procedural, or application emphasis you want, ensuring the task is for the right phase of learning Adjust the difficulty and complexity of any task to meet the needs of all learners It’s not only what works, but when. Exemplary lessons, video clips, and online resources help you leverage the most effective teaching practices at the most effective time to meet the surface, deep, and transfer learning needs of every student.




Teaching Math in Middle School


Book Description

This book is a comprehensive guide to designing and delivering high-quality, evidence-based mathematics instruction in middle school. With in-depth coverage of best practices for instruction and assessment within a multi-tiered systems of support (MTSS) framework, this book empowers teachers to build numeracy in students and collaborate effectively to meet all students' needs.




Making Sense of Mathematics for Teaching Grades 6-8


Book Description

Develop a deep understanding of mathematics. This user-friendly resource presents grades 6–8 teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Make connections between elementary fraction-based content to fraction operations taught in the middle grades. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, and modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to grow as both learners and teachers of mathematics. Gain clarity about the most productive progression of mathematical teaching and learning for grades 6–8. Access short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction 1 Fraction Operations and Integer Concepts and Operations 2 Ratios and Proportional Relationships 3 Equations, Expressions, and Inequalities 4 Functions 5 Measurement and Geometry 6 Statistics and Probability Epilogue: Next Steps References and Resources Index




Teaching Math at a Distance, Grades K-12


Book Description

Make Rich Math Instruction Come to Life Online In an age when distance learning has become part of the "new normal," educators know that rich remote math teaching involves more than direct instruction, online videos, and endless practice problems on virtual worksheets. Using both personal experience and those of teachers in real K-12 online classrooms, distance learning mathematics veteran Theresa Wills translates all we know about research-based, equitable, rigorous face-to-face mathematics instruction into an online venue. This powerful guide equips math teachers to: Build students’ agency, identity, and strong math communities Promote mathematical thinking, collaboration, and discourse Incorporate rich mathematics tasks and assign meaningful homework and practice Facilitate engaging online math instruction using virtual manipulatives and other concrete learning tools Recognize and address equity and inclusion challenges associated with distance learning Assess mathematics learning from a distance With examples across the grades, links to tutorials and templates, and space to reflect and plan, Teaching Math at a Distance offers the support, clarity, and inspiration needed to guide teachers through teaching math remotely without sacrificing deep learning and academic growth.