Multigrid


Book Description

Multigrid presents both an elementary introduction to multigrid methods for solving partial differential equations and a contemporary survey of advanced multigrid techniques and real-life applications.Multigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.* Covers the whole field of multigrid methods from its elements up to the most advanced applications* Style is essentially elementary but mathematically rigorous* No other book is so comprehensive and written for both practitioners and students







Multiscale and Multiresolution Methods


Book Description

Many computionally challenging problems omnipresent in science and engineering exhibit multiscale phenomena so that the task of computing or even representing all scales of action is computationally very expensive unless the multiscale nature of these problems is exploited in a fundamental way. Some diverse examples of practical interest include the computation of fluid turbulence, structural analysis of composite materials, terabyte data mining, image processing, and a multitude of others. This book consists of both invited and contributed articles which address many facets of efficient multiscale representation and scientific computation from varied viewpoints such as hierarchical data representations, multilevel algorithms, algebraic homogeni- zation, and others. This book should be of particular interest to readers interested in recent and emerging trends in multiscale and multiresolution computation with application to a wide range of practical problems.




Acta Numerica 2005: Volume 14


Book Description

A high-impact factor, prestigious annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.




Robust Multigrid Algorithms for the Incompressible Navier-Stokes Equations


Book Description

Anisotropies occur naturally in CFD where the simulation of small scale physical phenomena, such as boundary layers at high Reynolds numbers, causes the grid to be highly stretched leading to a slow down in convergence of multigrid methods. Several approaches aimed at making multigrid a robust solver have been proposed and analyzed in literature using the scalar diffusion equation. However, they have been rarely applied to solving more complicated models, like the incompressible Navier-Stokes equations. This paper contains the first published numerical results of the behavior of two popular robust multigrid approaches (alternating-plane smoothers combined with standard coarsening and plane implicit smoothers combined with semi-coarsening) for solving the 3-D incompressible Navier-Stokes equations in the simulation of the driven cavity and a boundary layer over a flat plate on a stretched grid. The discrete operator is obtained using a staggered-grid arrangement of variables with a finite volume technique and second-order accuracy is achieved using defect correction within the multigrid cycle. Grid size, grid stretching and Reynolds number are the factors considered in evaluating the robustness of the multigrid methods. Both approaches yield large increases in convergence rates over cell-implicit smoothers on stretched grids. The combination of plane implicit smoothers and semi-coarsening was found to be fully robust in the fiat plate simulation up to Reynolds numbers 10(exp 6) and the best alternative in the driven cavity simulation for Reynolds numbers above 10(exp 3). The alternating-plane approach exhibits a better behavior for lower Reynolds numbers (below to 10(exp 3) in the driven cavity simulation. A parallel variant of the smoother, tri-plane ordering, presents a good trade-off between convergence and parallel properties.




Opportunities for Breakthroughs in Large-Scale Computational Simulation and Design


Book Description

Opportunities for breakthroughs in the large-scale computational simulation and design of aerospace vehicles are presented. Computational fluid dynamics tools to be used within multidisciplinary analysis and design methods are emphasized. The opportunities stem from speedups and robustness improvements in the underlying unit operations associated with simulation (geometry modeling, grid generation, physical modeling, analysis, etc.). Further, an improved programming environment can synergistically integrate these unit operations to leverage the gains. The speedups result from reducing the problem setup time through geometry modeling and grid generation operations, and reducing the solution time through the operation counts associated with solving the discretized equations to a sufficient accuracy. The opportunities are addressed only at a general level here, but an extensive list of references containing further details is included.




Frontiers of Computational Fluid Dynamics 2002


Book Description

This series of volumes on the ?Frontiers of Computational Fluid Dynamics? was introduced to honor contributors who have made a major impact on the field. The first volume was published in 1994 and was dedicated to Prof Antony Jameson; the second was published in 1998 and was dedicated to Prof Earl Murman. The volume is dedicated to Prof Robert MacCormack.The twenty-six chapters in the current volume have been written by leading researchers from academia, government laboratories, and industry. They present up-to-date descriptions of recent developments in techniques for numerical analysis of fluid flow problems, and applications of these techniques to important problems in industry, as well as the classic paper that introduced the ?MacCormack scheme? to the world.




PETSc for Partial Differential Equations: Numerical Solutions in C and Python


Book Description

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.