The Aharonov-Bohm Effect


Book Description




Wave-Particle Duality


Book Description

This volume tries to continue a tradition of reviews of the contemporary research on the foundations of modern physics begun by the volume on the Einstein Podolsky-Rosen paradox that appeared a few years ago. (I) Its publication coin cides with the hundredth anniversary of de Broglie's birth (1892), a very welcome superposition, given the lasting influence of the Einstein-de Broglie conception of wave-particle duality. The present book, however, contains papers based on a broad spectrum of basic ideas, some even opposite to those that Einstein and de Broglie would have liked. The order of the contributions in this book is alphabetical by first author's name. It is important here to stress the presence of three reviews of fundamental experimental data, by Hasselbach (electron interferometry), Rauch (neutron interferometry), and Tonomura (Aharonov-Bohm effect). Hasselbach reviews several interesting experiments performed in 1Ubingen with the electron biprism interferometer. Wave-particle duality is brought out in striking ways, e. g., in the buildup of an interference pattern out of single events. The Sagnac effect for electrons is also discussed. The chapter by Rauch presents interesting results on wave-particle duality for neutrons. Of particular interest are the differences between stochastic and deterministic absorption in the neutron interferometer, and the concrete evidence for the quantum-mechanical 41T-symmetry of spinors. In the short chapter by Tonomura, conclusive evidence for the reality of the Aharonov Bohm effect is reviewed, collected in experiments based on advanced technologies of electron holography and microlithography.




Compendium of Quantum Physics


Book Description

With contributions by leading quantum physicists, philosophers and historians, this comprehensive A-to-Z of quantum physics provides a lucid understanding of key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional and new concepts, making it an indispensable resource for concise, up-to-date information about the many facets of quantum physics.







The Aharonov-Bohm Effect


Book Description

30 years ago, the Aharonov-Bohm effect was predicted for the first time; since then, this quantum phenomenon which so grossly irritates a physical intuition trained in Maxwellian electrodynamics, has been discussed and studied both experimentally and theoretically. A thorough understanding of the Aharonov-Bohm effect has substantial bearing on the foundations and interpretation of quantum mechanics, on the understanding of gauge theories and on the role of topological methods in mathematical physics. In the meantime, decisive precision measurements have experimentally confirmed the predictions of Aharonov and Bohm. In Part One of this book M. Peshkin outlines the theoretical ideas that are actually tested in the experiments described by A. Tonomura in Part Two. Both authors give a complete and pedagogically well written description of the Aharonov-Bohm effect and its measurement. The book is accessible to everybody interested in quantum mechanics and its foundations, in particular to students. The presentation also reviews the historical developments in some detail.




Quantum Paradoxes


Book Description

A Guide through the Mysteries of Quantum Physics! Yakir Aharonov is one of the pioneers in measuring theory, the nature of quantum correlations, superselection rules, and geometric phases and has been awarded numerous scientific honors. The author has contributed monumental concepts to theoretical physics, especially the Aharonov-Bohm effect and the Aharonov-Casher effect. Together with Daniel Rohrlich, Israel, he has written a pioneering work on the remaining mysteries of quantum mechanics. From the perspective of a preeminent researcher in the fundamental aspects of quantum mechanics, the text combines mathematical rigor with penetrating and concise language. More than 200 exercises introduce readers to the concepts and implications of quantum mechanics that have arisen from the experimental results of the recent two decades. With students as well as researchers in mind, the authors give an insight into that part of the field, which led Feynman to declare that "nobody understands quantum mechanics". * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/




Emergent Quantum Mechanics


Book Description

Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in "deeper-level" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.




Inequivalent Representations of Canonical Commutation and Anti-Commutation Relations


Book Description

Canonical commutation relations (CCR) and canonical anti-commutation relations (CAR) are basic principles in quantum physics including both quantum mechanics with finite degrees of freedom and quantum field theory. From a structural viewpoint, quantum physics can be primarily understood as Hilbert space representations of CCR or CAR. There are many interesting physical phenomena which can be more clearly understood from a representation–theoretical viewpoint with CCR or CAR. This book provides an introduction to representation theories of CCR and CAR in view of quantum physics. Particular emphases are put on the importance of inequivalent representations of CCR or CAR, which may be related to characteristic physical phenomena. The topics presented include general theories of representations of CCR and CAR with finite and infinite degrees of freedom, the Aharonov–Bohm effect, time operators, quantum field theories based on Fock spaces, Bogoliubov transformations, and relations of infinite renormalizations with inequivalent representations of CCR. This book can be used as a text for an advanced topics course in mathematical physics or mathematics.







Biophysics Of Consciousness: A Foundational Approach


Book Description

The problem of how the brain produces consciousness, subjectivity and 'something it is like to be' remains one of the greatest challenges to a complete science of the natural world. While various scientists and philosophers approach the problem from their own unique perspectives and in the terms of their own respective fields, Biophysics of Consciousness: A Foundational Approach attempts a consilience across disparate disciplines to explain how it is possible that an objective brain produces subjective experience.This volume unites the crème de la crème of physicists, neuroscientists, and psychiatrists in the attempt to understand consciousness through a foundational approach encompassing ontological, evolutionary, neurobiological, and Freudian interpretations with the focus on conscious phenomena occurring in the brain. By integrating the perspectives of these diverse disciplines with the latest research and theories on the biophysics of the brain, the book tries to explain how consciousness can be an adaptive and causal element in the natural world.