Advanced Organic Chemistry


Book Description

The two-part, fifth edition of Advanced Organic Chemistry has been substantially revised and reorganized for greater clarity. The material has been updated to reflect advances in the field since the previous edition, especially in computational chemistry. Part A covers fundamental structural topics and basic mechanistic types. It can stand-alone; together, with Part B: Reaction and Synthesis, the two volumes provide a comprehensive foundation for the study in organic chemistry. Companion websites provide digital models for study of structure, reaction and selectivity for students and exercise solutions for instructors.




The Anomeric Effect


Book Description

This book provides a comprehensive review of the structural, conformational, and chemical manifestations of the anomeric effect. In order to present a cogent discussion of this most fundamental and relevant phenomenon, three chapters examine our present understanding of the origin of this conformational effect, based upon a wealth of theoretical and physical data. Equally important, however, are three additional chapters that deal with the general consequences of the stereoelectronic interactions that are associated with the basis of the anomeric effect. The remainder of the book is devoted to new areas of development in the topic-such as differentiation of the endo and exo anomeric interactions, specific analysis of the enthalpic component of anomeric effects, critical evaluation of the kinetics and reverse anomeric effects, discovery of a new substantial effect in second- and lower-row anomeric segments, and others.




Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry


Book Description

The book deals with polar effects in carbohydrates and how these effects control the stereochemistry of carbohydrate reactions. This is important for understanding the mechanisms of certain carbohydrate reactions, including enzymatic reactions such as glycosidases, a very important group of enzymes in living matter. It is also very useful for synthetic carbohydrate chemists who would like to synthesize stereoselectively certain classes of carbohydrates. This book will be a very important source of information for practicing synthetic carbohydrate chemists. The book will also be helpful for organic chemists, or for those studying glycobiology.




Advances in Heterocyclic Chemistry


Book Description

Established in 1960, Advances in Heterocyclic Chemistry is the definitive serial in the area-one of great importance to organic chemists, polymer chemists and many biological scientists. Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties. Established in 1960, Advances in Heterocyclic Chemistry is the definitive serial in the area - one of great importance to organic chemists, polymer chemists and many biological scientists Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties




Concerted Organic and Bio-Organic Mechanisms


Book Description

The concept of concerted mechanisms was formulated nearly 90 years ago and virtually all general organic chemistry texts mention it. Until now, however, no monograph has addressed the concept explicitly. Over the last two decades, substantial advancements made in the development of precise methods for elucidating concerted mechanisms have heightened the need for a comprehensive text on the subject. Concerted Organic and Bio-organic Mechanisms gathers the salient materials related to this emerging field into a single text. It sets forth the precise definition of concertedness-along with working sub-definitions-and describes rigorous experimental tools chemists can use to diagnose the existence or absence of concerted mechanisms. Advances in our understanding of concerted mechanisms lead to further questions. Concerted Organic and Bio-organic Mechanisms provides the background and the tools researchers need to consider these important questions and further advance the frontiers of reactions, synthesis, and catalysis.




Modern Organic Synthesis


Book Description

This book bridges the gap between sophomore and advanced / graduate level organic chemistry courses, providing students with a necessary background to begin research in either an industry or academic environment. • Covers key concepts that include retrosynthesis, conformational analysis, and functional group transformations as well as presents the latest developments in organometallic chemistry and C–C bond formation • Uses a concise and easy-to-read style, with many illustrated examples • Updates material, examples, and references from the first edition • Adds coverage of organocatalysts and organometallic reagents




Principles of Asymmetric Synthesis


Book Description

The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis (more than 1300 references), the aim of this book is to present a detailed analysis of the factors that govern stereoselectivity in organic reactions. It is important to note that the references were each individually checked by the authors to verify relevance to the topics under discussion. The study of stereoselectivity has evolved from issues of diastereoselectivity, through auxiliary-based methods for the synthesis of enantiomerically pure compounds (diastereoselectivity followed by separation and auxiliary cleavage), to asymmetric catalysis. In the latter instance, enantiomers (not diastereomers) are the products, and highly selective reactions and modern purification techniques allow preparation - in a single step - of chiral substances in 99% ee for many reaction types. After an explanation of the basic physical-organic principles of stereoselectivity, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Analytical Methods" provides a critical overview of the most common methods for analysis of stereoisomers. The authors then follow the 'tried-and-true' format of grouping the material by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions (enolate alkylations, organometal additions to carbonyls, aldol and Michael reactions, and cycloadditions and rearrangements), one chapter on reductions and hydroborations (carbon-hydrogen bond forming reactions), and one on oxidations (carbon-oxygen and carbon-nitrogen bond forming reactions). Leading references are provided to natural product synthesis that have been accomplished using a given reaction as a key step. In addition to tables of examples that show high selectivity, a transition state analysis is presented to explain - to the current level of understanding - the stereoselectivity of each reaction. In one case (Cram's rule) the evolution of the current theory is detailed from its first tentative (1952) postulate to the current Felkin-Anh-Heathcock formalism. For other reactions, only the currently accepted rationale is presented. Examination of these rationales also exposes the weaknesses of current theories, in that they cannot always explain the experimental observations. These shortcomings provide a challenge for future mechanistic investigations.




Structure Elucidation by Modern NMR


Book Description

During the last few years, routine applications of NMR (Nuclear Magnetic Resonance) techniques have developed at a tremendous pace. The latest generation of spectrometers have enabled chemists to perform new types of experiments, such as spinlock and inverse-detected methods. This third, revised and expanded edition introduces the latest methodologies and incorporates them into new exercises.




Chemical Physics Research Trends


Book Description

Chemical physics and physical chemistry are closely related fields of study. Together they are distinguished from other disciplines by the incredible range of problems addressed by their practitioners. An effective physical chemist or chemical physicist is a "jack-of-all-trades", able to apply the principles and techniques of the field to everything from high-tech materials to biology. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. This book gathers important research from around the world.