The Application of Pericyclic, Photolytic, Chemoenzymatic and Cross-coupling Techniques to the Synthesis of Biologically Active Natural Products and Related Structures


Book Description

The body of this thesis is comprised of four scientific articles and is preceded by an overview that contextualises all of this submitted/published work. The first major part of this thesis is comprised of Publication 1. This details work concerned with establishing the true structure of the sorbicillinoid-derived isolate rezishanone C by total synthesis. Specifically, the enantiomer of what proved to be the true structure of the sorbicillinoid rezishanone C (sorbivinetone) was synthesized from the homochiral cis-1,2-dihydrocatechol that is itself generated through the whole-cell biotransformation of toluene. These studies and dispersion-corrected DFT calculations support the proposal that rezishanone C is an artefact of the isolation process and arises through a Diels-Alder cycloaddition reaction between ethyl vinyl ether and sorbicillinol. The second major part of the thesis is comprised of Publication 2. This is concerned with the synthesis and photochemical rearrangements of enantiomerically pure, polysubstituted and, in some cases, variously annulated bicyclo[2.2.2]octenones. Specifically, then, a series of bicyclo[2.2.2]octenones has been prepared by engaging the enzymatically-derived and enantiomerically pure cis-1,2-dihydrocatechol in either inter- or intra-molecular Diels-Alder cycloaddition reactions with various dienophiles. These polycyclic adducts or simple derivatives thereof were shown to readily participate in both photochemically promoted 1,3-acyl migration and oxa-di-pi-methane rearrangement processes to give corresponding products. The third major part of the thesis is comprised of Publication 3. This details the establishment of a palladium-catalyzed Ullmann cross-coupling/reductive cyclization route to the carbazole natural products 3-methyl-9H-carbazole, glycoborine, glycozoline, clausazoline K, mukonine and karapinchamine A. These were prepared by reductive cyclisation of the relevant 2-arylcyclohex-2-en-1-one to the corresponding tetrahydrocarbazole and dehydrogenation of this to give the target carbazole. Compounds of 2-arylcyclohex-2-en-1-one were themselves prepared using a palladium-catalyzed Ullmann cross-coupling reaction that served to link the appropriate 2-iodocyclohex-2-en-1-one and o-halonitrobenzene. The fourth and final part of the thesis is comprised of Publication 4. This details a unified approach to the isomeric alpha-, beta-, gamma- and delta-carbolines via their 6,7,8,9-tetrahydro counterparts. Specifically, then, a cross-coupling/reductive cyclisation protocol has been employed in preparing all four carbolines. So, for example, the 2-nitropyridine derivative, which is readily generated through an efficient palladium-catalyzed Ullmann cross-coupling reaction, is reductively cyclized under conventional conditions to give 6,7,8,9-tetrahydro-alpha-carboline that is itself readily aromatized to give alpha-carboline.




Chemistry of Plant Natural Products


Book Description

Aimed at advanced undergraduate and graduate students and researchers working with natural products, Professors Sunil and Bani Talapatra provide a highly accessible compilation describing all aspects of plant natural products. Beginning with a general introduction to set the context, the authors then go on to carefully detail nomenclature, occurrence, isolation, detection, structure elucidation (by both degradation and spectroscopic techniques) stereochemistry, conformation, synthesis, biosynthesis, biological activity and commercial applications of the most important natural products of plant origin. Each chapter also includes detailed references (with titles) and a list of recommended books for additional study making this outstanding treatise a useful resource for teachers of chemistry and researchers working in universities, research institutes and industry.




Principles and Applications of Asymmetric Synthesis


Book Description

Asymmetric synthesis remains a challenge to practicing scientistsas the need for enantiomerically pure or enriched compoundscontinues to increase. Over the last decade, a large amount ofliterature has been published in this field. Principles andApplications of Asymmetric Synthesis consolidates and evaluates themost useful methodologies into a one-volume resource for theconvenience of practicing scientists and students. Authored by internationally renowned scientists in the field, thisreliable reference covers more than 450 reactions and includesimportant stoichiometric as well as catalytic asymmetric reactions.The first chapter reviews the basic principles, commonnomenclature, and analytical methods, and the remainder of the bookis organized according to reaction type. The text examines suchtopics as: Carbon-carbon bond formations involving carbonyls, enamines,imines, and enolates Asymmetric C-O bond formations including epoxidation,dihydroxylation, and aminohydroxylation Asymmetric synthesis using the Diels-Alder reaction and othercyclizations Applications to the total synthesis of natural products Use of enzymes in asymmetric synthesis Practicing chemists in the pharmaceutical, fine chemical, andagricultural professions as well as graduate students will findthat Principles and Applications of Asymmetric Synthesis affordscomprehensive and current coverage.




Natural Product Biosynthesis


Book Description

This textbook describes the types of natural products, the biosynthetic pathways that enable the production of these molecules, and an update on the discovery of novel products in the post-genomic era.




Hydrogen Transfer Reactions


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.




Homogeneous Photocatalysis


Book Description

Photocatalysis and related processes occupy a strategic position for the future of photochemistry. This volume provides an introduction to basic concepts and explains how applications work at the molecular level.




Handbook of Synthetic Photochemistry


Book Description

Unique in its focus on preparative impact rather than mechanistic details, this handbook provides an overview of photochemical reactions classed according to the structural feature that is built in the photochemical step, so as to facilitate use by synthetic chemists unfamiliar with this topic. An introductory section covers practical questions on how to run a photochemical reaction, while all classes of the most important photocatalytic reactions are also included. Perfect for organic synthetic chemists in academia and industry.




Synthetic Applications


Book Description

Magnetic nanocatalysts are an important tool for greener catalytic processes due to the ease of their removal from a reaction medium. This book explores different magnetic nanocatalysts, their use in synthesis, and their recyclability. Topics covered include magnetic nanocatalysts for S-S bond formation, N-hetercycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, and their recyclability.




Understanding Organometallic Reaction Mechanisms and Catalysis


Book Description

Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper understanding of the underlying reaction mechanism and correlation between molecular structure and reactivity. The contributions represent a wealth of first-hand information from renowned experts working in these disciplines, covering such topics as activation of small molecules, C-C and C-Heteroatom bonds formation, cross-coupling reactions, carbon dioxide converison, homogeneous and heterogeneous transition metal catalysis and metal-graphene systems. With the knowledge gained, the reader will be able to improve existing reaction protocols and rationally design more efficient catalysts or selective reactions. An indispensable source of information for synthetic, analytical, and theoretical chemists in academia and industry.




Strategies and Solutions to Advanced Organic Reaction Mechanisms


Book Description

Strategies and Solutions to Advanced Organic Reaction Mechanisms: A New Perspective on McKillop's Problems builds upon Alexander (Sandy) McKillop's popular text, Solutions to McKillop's Advanced Problems in Organic Reaction Mechanisms, providing a unified methodological approach to dealing with problems of organic reaction mechanism. This unique book outlines the logic, experimental insight and problem-solving strategy approaches available when dealing with problems of organic reaction mechanism. These valuable methods emphasize a structured and widely applicable approach relevant for both students and experts in the field. By using the methods described, advanced students and researchers alike will be able to tackle problems in organic reaction mechanism, from the simple and straight forward to the advanced.