The Biochemistry and Physiology of Plant Disease


Book Description

The infection process, Photosynthesis, Respiration, Cell wall composition and metabolism, Nucleic acid and protein metabolism, Secondary metabolites, Growth regulator metabolism, Transcellular and vascular transport, Toxins, Resistance to infection.




Physiology and Biochemistry of Plant-Pathogen Interactions


Book Description

There has been a significant surge of interest in the study of the physiology and biochemistry of plant host-parasite interactions in recent years, as evidenced by the number of research papers currently being published on the subject. The in creased interest is probably based on the evidence that effective management of many plant diseases is, for the most part, contingent upon a clear understanding of the nature of host-parasite interactions. This intensified research effort calls for a greater number of books, such as this one, designed to compile, synthesize, and evaluate widely scattered pieces of information on this subject. The study of host-parasite interactions concerns the struggle between plants and pathogens, which has been incessant throughout their coevolution. Such in teractions are often highly complex. Pathogens have developed sophisticated of fensive systems to parasitize plants, while plants have evolved diversified defen sive strategies to ward off potential pathogens. In certain cases, the outcome of a specific host-parasite interaction seems to depend upon the presence or efficacy of the plant's defense system. A plant may become diseased when a parasite manages to invade it, unhindered by preexisting defense systems and/or without eliciting the plant's induced resistance response(s). Absence of disease may re flect the inability of the invading pathogen to overcome the plant's defense sys tem(s).




Physiological Plant Pathology


Book Description

Plant pathology embraces all aspects of biological and scientific activity which are concerned with understanding the complex phenomena of diseases in plants. Physiological plant pathology represents those specialities within plant pathology which focus on the physiological and biochemical activities of pathogens and on the response of host plant tissues. Today there is an increasing recognition on the part of the scientific agri cultural community that only through a deeper and more fundamental under standing of all the interacting components of the agricultural biota can we expect to improve our capabilities of feeding an expanding world population. It is in this context that physiological plant pathology has assumed new significance within the broader field of plant pathology. No longer are studies on the biochemistry and physiology of pathogens and pathogenesis merely isolated academic exercises; rather, a substantial coherent body of knowledge is accumulating upon which our understanding of the process of disease developmen t and host resistance is being founded. It is from these foundations of knowledge that ultimately new insights into the control of plant diseases may be expected to grow. It seems appropriate, therefore, that at regular intervals those involved in the various subspecialities encompassing the broadest aspects of physiological plant pathology reassess the contributions within the particular specialities in the light of new knowledge and technologies for the purpose of articulating new and productive directions for the future.




Fungal Wilt Diseases of Plants


Book Description

Fungal Wilt Diseases of Plants focuses on wilt diseases caused by the fungal genera Verticillium, Fusarium, and Ceratocystis. Special attention is given to the interactions of physiological, biochemical, and anatomical factors, as these relate to pathogenesis and mechanisms of disease resistance. Organized into 16 chapters, this book begins with a description, in a historical perspective, of the major research themes in fungal wilt diseases. It then looks into the worldwide status of this plant disease. The three subsequent chapters describe the epidemiology and life cycle of the major fungal wilt pathogens in Fusarium, Verticillium, and Ceratocystis. This book also provides an in-depth view of the genetics and biochemistry of these pathogens; the nature of pathogenesis and the effects of wilt pathogens on host-water relations; and the sources and genetics of host resistance in field and fruit crops, vegetable crops, and shade trees. Other chapters are dedicated to the biochemistry, physiology, and the anatomical aspects of resistance and to the progress in the biological and chemical control of these pathogens. This text will be of great value to graduate students and senior research scientists in plant pathology, physiology, and biochemistry, who are specifically involved in studying wilt diseases and host-parasite interactions. It will provide them the detailed background information needed to supplement their specialized research interests.




Introduction to Plant Pathology


Book Description

This invaluable resource introduces the eleven types of organism that cause plant disease, ranging from higher plants to viroids and describes examples of cash and staple crop diseases that have caused human catastrophes. Early chapters cover serological and molecular techniques for the diagnosis of plant pathogens, epidemiology, methods for estimating disease severity and its effect on crop yields and techniques for limiting inoculum. Later chapters are concerned with colonisation of the plant and symptom development and the underlying biochemical and genetic factors that control these events. Finally, the control of plant disease using a variety of techniques including genetic modification is discussed. Modern diagnostic techniques Epidemiology and the measurement of disease severity The biochemistry and molecular biology of plant disease Control through cultural, biological, genetic and molecular techniques A wealth of examples and applications including full colour photographs




Molecular Biology in Plant Pathogenesis and Disease Management:


Book Description

Investigations on various aspects of plant-pathogen interactions have the ultimate aim of providing information that may be useful for the development of effective crop disease management systems. Molecular techniques have accelerated the formulation of short- and long-term strategies of disease management. Exclusion and eradication of plant pathogens by rapid and precise detection and identification of microbial pathogens in symptomatic and asymptomatic plants and planting materials by employing molecular methods has been practiced extensively by quarantines and certification programs with a decisive advantage. Identification of sources of resistance genes, cloning and characterization of desired resistance genes and incorporation of resistance gene(s) into cultivars and transformation of plants with selected gene(s) have been successfully performed by applying appropriate molecular techniques. Induction of resistance in susceptible cultivars by using biotic and abiotic inducers of resistance is a practical proposition for several crops whose resistance levels could not be improved by breeding or transformation procedures. The risks of emergence of pathogen strains less sensitive or resistant to chemicals have been reduced appreciably by rapid identification of resistant strains and monitoring the occurrence of such strains in different geographical locations.




Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management


Book Description

The fungus Sclerotinia has always been a fancy and interesting subject of research both for the mycologists and pathologists. More than 250 species of the fungus have been reported in different host plants all over the world that cause heavy economic losses. It was a challenge to discover weak links in the disease cycle to manage Sclerotinia diseases of large number of crops. For researchers and s- dents, it has been a matter of concern, how to access voluminous literature on Sclerotinia scattered in different journals, reviews, proceedings of symposia, workshops, books, abstracts etc. to get a comprehensive picture. With the pub- cation of book on ‘Sclerotinia’, it has now become quite clear that now only three species of Sclerotinia viz. , S. sclerotiorum, S. minor and S. trifoliorum are valid. The authors have made an excellent attempt to compile all the available infor- tion on various aspects of the fungus Sclerotinia. The information generated so far has been presented in different chapters. After introducing the subject various aspects viz. , the diseases, symptomatology, disease assessment, its distribution, economic importance, the pathogen, its taxonomy, nomenclature, reproduction, reproductive structures with fine details, variability, perpetuation, infection and pathogenesis, biochemical, molecular and physiological aspects of host-pathogen interaction, seed infection, disease cycle, epidemiology and forecasting, host resistance with sources of resistance, mechanism of resistance and other mana- ment strategies have been covered.




Biochemical Plant Pathology


Book Description




Plant Biochemistry


Book Description

1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.




Biochemistry and Molecular Biology of Plants


Book Description

With over 1000 original drawings and 500 photographs, this work offers complete coverage of cell biology, plant physiology and molecular biology.