Chemistry of Iron


Book Description

This book is designed to be of use to the reader in two different ways. First, it is intended to provide a general introduction to all aspects of iron chemistry for readers from a variety of different scientific backgrounds. It has been written at a level suitable for use by graduates and advanced undergraduates in chemistry and biochemistry, and graduates in physics, geology, materials science, metallurgy and biology. It is not designed to be a dictionary of iron compounds but rather to provide each user with the necessary tools and background to pursue their ,individual interests in the wide areas that are influenced by the chemistry of iron. To achieve this goal each chapter has been written by a contemporary expert active in the subject so that the reader will benefit from their individual insight. Although it is generally assumed that the reader will have an understanding of bonding theories and general chemistry, the book is well referenced so that any deficiencies in the reader's background can be addressed. The book was also designed as a general reference book for initial pointers into a scientific literature that is growing steadily as the understanding and uses of this astonishingly versatile element continue to develop. To meet this aim the book attempts some coverage of all aspects of the chemistry of iron, not only outlining what understanding has been achieved to date but also identifying targets to be aimed at in the future.




The Biological Chemistry of Iron


Book Description

Proceedings of the NATO Advanced Study Institute, Edmonton, Alberta, Canada, August 23-September 4, 1981




Biological Inorganic Chemistry


Book Description

The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters




The Chemical Analysis of Iron


Book Description




Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc


Book Description

This volume is the newest release in the authoritative series issued by the National Academy of Sciences on dietary reference intakes (DRIs). This series provides recommended intakes, such as Recommended Dietary Allowances (RDAs), for use in planning nutritionally adequate diets for individuals based on age and gender. In addition, a new reference intake, the Tolerable Upper Intake Level (UL), has also been established to assist an individual in knowing how much is "too much" of a nutrient. Based on the Institute of Medicine's review of the scientific literature regarding dietary micronutrients, recommendations have been formulated regarding vitamins A and K, iron, iodine, chromium, copper, manganese, molybdenum, zinc, and other potentially beneficial trace elements such as boron to determine the roles, if any, they play in health. The book also: Reviews selected components of food that may influence the bioavailability of these compounds. Develops estimates of dietary intake of these compounds that are compatible with good nutrition throughout the life span and that may decrease risk of chronic disease where data indicate they play a role. Determines Tolerable Upper Intake levels for each nutrient reviewed where adequate scientific data are available in specific population subgroups. Identifies research needed to improve knowledge of the role of these micronutrients in human health. This book will be important to professionals in nutrition research and education.




The Chemistry of Iron, Cobalt and Nickel


Book Description

The Chemistry of Iron, Cobalt and Nickel deals with the chemistry of iron, cobalt, and nickel and covers topics ranging from the occurrence and distribution of all three elements to their properties, allotropy, and analytical chemistry. Compounds of iron, cobalt, and nickel in both low and high oxidation states are also discussed. This book is divided into three sections and begins with the history of iron, along with its occurrence and distribution, allotropy, and preparation and industrial production. The nuclear, physical, and chemical properties of iron, as well as the biological importance of iron compounds, are also considered. Compounds of iron are discussed, including carbonyls and nitric oxide complexes. The next two sections deal with the history, occurrence and distribution, allotropy, analytical chemistry, and preparation and industrial production of cobalt and nickel, along with their nuclear, physical, and chemical properties. Compounds of cobalt and nickel are examined, from carbonyls and nitrosyls to cyanides and organometallic compounds. This monograph will be a useful resource for inorganic chemists.




Biological Inorganic Chemistry


Book Description

Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.




Iron Catalysis


Book Description

Juan I. Padrón and Víctor S. Martín: Catalysis by means of Fe-based Lewis acids; Hiroshi Nakazawa*, Masumi Itazaki: Fe–H Complexes in Catalysis; Kristin Schröder, Kathrin Junge, Bianca Bitterlich, and Matthias Beller: Fe-catalyzed Oxidation Reactions of Olefins, Alkanes and Alcohols: Involvement of Oxo- and Peroxo Complexes; Chi-Ming Che, Cong-Ying Zhou, Ella Lai-Ming Wong: Catalysis by Fe=X Complexes (X=NR, CR2); René Peters, Daniel F. Fischer and Sascha Jautze: Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation; Markus Jegelka, Bernd Plietker: Catalysis by Means of Complex Ferrates.




Iron Fortification of Foods


Book Description

Iron Fortification of Foods discusses in detail the problems encountered with different iron sources in staple foods, beverages, condiments, and salt, as well as provides a "how to approach toward solving these problems in both developed and developing countries. Organized into three parts, the book begins with the discussion on the prevalence, causes, and treatment of anemia, as well as the effect of food on the availability of iron fortificants. It then describes the different iron sources, their interaction with food, and their bioavailability. Lastly, it explores the critical area of product application. The book significantly provides needed information for almost anyone, in any country, interested in fortifying food with iron and in treating iron deficiency anemia.




The Nramp Family


Book Description

This book is the first comprehensive volume on the "Nramp family", highlighting the physiological importance of Nramp proteins as metal transporters. The molecular knowledge of these membrane proteins is presented from an evolutionary perspective, considering Nramp cellular function and mechanism of transport in key model organisms. The pathological significance of Nramp genetic polymorphism is discussed with emphasis on metal homeostasis and microbial infection. The chapters were contributed by leading investigators, providing a timely state of the art book in this rapidly growing field. The Nramp Family will be useful to a broad community of scientists interested in metal transport and molecular biology. It will be of interest to the research audience in the broad fields of metal ions and molecular medicine.