The Many Faces of Maxwell, Dirac and Einstein Equations


Book Description

This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solutions, the comprehensive list of mathematical symbols, and the list of acronyms and abbreviations are provided for self-study for students as well as for classes. From the reviews of the first edition: “The text is written in a very readable manner and is complemented with plenty of worked-out exercises which are in the style of extended examples. ... their book could also serve as a textbook for graduate students in physics or mathematics." (Alberto Molgado, Mathematical Reviews, 2008 k)







The Many Faces of Maxwell, Dirac and Einstein Equations


Book Description

This book is a comprehensive reference on differential geometry. It shows that Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, have representatives as objects of the same mathematical nature. The book also analyzes some foundational issues of relativistic field theories. All calculation procedures are illustrated by many exercises that are solved in detail.




Clifford Algebras and Spinor Structures


Book Description

This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.







Gravitation:the Spacetime Structure: Proceedings Of The Viii Latin American Symposium On Relativity And Gravitation


Book Description

This volume contains five mini-courses: Nakedly Singular Solutions of Einstein's Equations (K Lake); Clifford Algebras, Relativity and Quantum Mechanics (P Lounesto); Numerical Relativity and Dynamical Evolution of Black Hole Spacetimes (R Matzner); Soliton and Vacua in Relativity Theory Revisited (G W Gibbons); Cosmic Strings and Their Observational Consequences (E P S Shellard); and seventy-seven research papers by Latin American scientists.




Geometric Algebras


Book Description




Space-Time Algebra


Book Description

This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, and enables physicists to understand topics in engineering, and engineers to understand topics in physics (including aspects in frontier areas), in a way which no other single mathematical system could hope to make possible. There is another aspect to Geometric Algebra, which is less tangible, and goes beyond questions of mathematical power and range. This is the remarkable insight it gives to physical problems, and the way it constantly suggests new features of the physics itself, not just the mathematics. Examples of this are peppered throughout ‘Space-Time Algebra’, despite its short length, and some of them are effectively still research topics for the future. From the Foreward by Anthony Lasenby




Gravity, Particles and Space-time


Book Description

This volume comprises original and review articles on the frontier problems of the gravitation theory, theoretical and mathematical physics. The volume is dedicated to the memory of Professor Dmitri Ivanenko who made the great contribution to the physical science of the twentieth century.