The Coliform Index and Waterborne Disease


Book Description

In the past decade there has been a rapid increase in waterborne outbreaks of disease associated with viral and protozoan agents, normally in drinking waters that were found to be microbially safe using the Coliform Index.For nearly a quarter of a century indicator organisms, in particular the coliform group, have been used to ensure the microbial




Waterborne Diseases in the US


Book Description

This book examines, in both a current and historical context, water-related illness in the U.S. Emphasis is placed upon the transmission of infectious diseases through contaminated drinking water supplies and those deficiencies in water supply systems which allow waterborne outbreaks to occur. Chapters have been included on the important etiologic agents responsible for waterborne outbreaks in the U.S., surveillance activities, regulations, water treatment to prevent the occurrence of waterborne outbreaks and procedures for investigating waterborne outbreaks. For completeness, discussion have been included on illnesses contracted by ingestion of contact with waters for bathing , swimming, or wading and chronic ingestion of low levels of chemical contaminants in drinking water; however, because of space limitations there are necessarily brief, and the reader is directed toward the provided references, which discuss these subjects in more depth.




Indicator Systems for Assessing Public Health Risk in Waters


Book Description

Abstract: For over one hundred years, indicator organisms such as coliforms have been measured as an index of public health risk from transmission of waterborne diseases. Even so, waterborne disease outbreaks have occurred in systems with negative coliform results, many traced to viral or protozoan etiologies. Conversely, no discernible public health outcomes have occurred in systems with positive coliform results. These inconsistencies arise because coliforms, as bacteria, respond differently to environmental stressors and engineered treatment processes than protozoan and viral pathogens. Recent reviews of four decades of indicator and pathogen monitoring indicated that coliphages are more highly correlated to pathogen presence in a variety of waters than coliforms. Therefore, the goal of this research was to re-examine a variety of traditional and novel indicator systems to determine their value as indicators, either singly or as a toolbox. We collected samples of animal feces, wastewaters, source waters and treated drinking waters. Samples were collected from four geographical regions of the United States (Northeast, South, Midwest and West) to assess spatial variability and in all four seasons to assess temporal variability. Samples were monitored for total coliforms, E. coli, male-specific and somatic coliphages, and other physical and chemical water quality parameters including organic carbon, pH and turbidity. The detection of coliforms and E. coli in this study's drinking waters suggests fecal contamination and supports the need for indicator monitoring in drinking water systems. The strength of bacterial indicators (coliforms and E. coli) was supported in this study by the fact that there was no seasonal variance in wastewaters or drinking waters. In addition, coliforms and E. coli did not vary by region in drinking waters. Male-specific and somatic coliphages proved to be promising indicators. In this study, male-specific coliphages correlated to bacterial indicators in animal feces. Both coliphages were able to survive various environmental conditions, wastewater treatment, and drinking water treatment processes. Neither of the coliphages varied by season in untreated drinking waters. An area of concern for both male-specific and somatic coliphages was the high level of non-detects. The thermotolerance of male-specific coliphages is also an area of concern for its use as a good universal indicator.




Indicators for Waterborne Pathogens


Book Description

Recent and forecasted advances in microbiology, molecular biology, and analytical chemistry have made it timely to reassess the current paradigm of relying predominantly or exclusively on traditional bacterial indicators for all types of waterborne pathogens. Nonetheless, indicator approaches will still be required for the foreseeable future because it is not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples. This comprehensive report recommends the development and use of a "tool box" approach by the U.S Environmental Protection Agency and others for assessing microbial water quality in which available indicator organisms (and/or pathogens in some cases) and detection method(s) are matched to the requirements of a particular application. The report further recommends the use of a phased, three-level monitoring framework to support the selection of indicators and indicator approaches.Â







Microbiology of Waterborne Diseases


Book Description

The second edition of Microbiology of Waterborne Diseases describes the diseases associated with water, their causative agents and the ways in which they gain access to water systems. The book is divided into sections covering bacteria, protozoa, and viruses. Other sections detail methods for detecting and identifying waterborne microorganisms, and the ways in which they are removed from water, including chlorine, ozone, and ultraviolet disinfection. The second edition of this handbook has been updated with information on biofilms and antimicrobial resistance. The impact of global warming and climate change phenomena on waterborne illnesses are also discussed. This book serves as an indispensable reference for public health microbiologists, water utility scientists, research water pollution microbiologists environmental health officers, consultants in communicable disease control and microbial water pollution students. Focuses on the microorganisms of most significance to public health, including E. coli, cryptosporidium, and enterovirus Highlights the basic microbiology, clinical features, survival in the environment, and gives a risk assessment for each pathogen Contains new material on antimicrobial resistance and biofilms Covers drinking water and both marine and freshwater recreational bathing waters




Waterborne Disease Outbreaks


Book Description







Waterborne Gastrointestinal Disease Outbreak Detection


Book Description

This manual provides guidance to water utilities and public health agencies, showing how to set up locally responsive water surveillance programs. It examines two major settings which surveillance must address and their appropriate responses: variations occurring in plant operation or distribution systems, and the detection of disease in the community. A proactive approach is described, involving watershed monitoring, record maintenance, and planning for emergencies. Material on public health recommends augmenting laboratory-based notifiable disease surveillance and creating or improving an emergency room-based sentinel system. A communications and action plan in case of outbreak is outlined. Emde is affiliated with the Northern Alberta Provincial Laboratory of Public Health, Canada. This work lacks a subject index. c. Book News Inc.




Global Issues in Water, Sanitation, and Health


Book Description

As the human population grows-tripling in the past century while, simultaneously, quadrupling its demand for water-Earth's finite freshwater supplies are increasingly strained, and also increasingly contaminated by domestic, agricultural, and industrial wastes. Today, approximately one-third of the world's population lives in areas with scarce water resources. Nearly one billion people currently lack access to an adequate water supply, and more than twice as many lack access to basic sanitation services. It is projected that by 2025 water scarcity will affect nearly two-thirds of all people on the planet. Recognizing that water availability, water quality, and sanitation are fundamental issues underlying infectious disease emergence and spread, the Institute of Medicine held a two-day public workshop, summarized in this volume. Through invited presentations and discussions, participants explored global and local connections between water, sanitation, and health; the spectrum of water-related disease transmission processes as they inform intervention design; lessons learned from water-related disease outbreaks; vulnerabilities in water and sanitation infrastructure in both industrialized and developing countries; and opportunities to improve water and sanitation infrastructure so as to reduce the risk of water-related infectious disease.